
Package: corpustools (via r-universe)
November 4, 2024

Version 0.5.1

Date 2023-05-07

Title Managing, Querying and Analyzing Tokenized Text

Description Provides text analysis in R, focusing on the use of a
tokenized text format. In this format, the positions of tokens
are maintained, and each token can be annotated (e.g.,
part-of-speech tags, dependency relations). Prominent features
include advanced Lucene-like querying for specific tokens or
contexts (e.g., documents, sentences), similarity statistics
for words and documents, exporting to DTM for compatibility
with many text analysis packages, and the possibility to
reconstruct original text from tokens to facilitate
interpretation.

Author Kasper Welbers and Wouter van Atteveldt

Maintainer Kasper Welbers <kasperwelbers@gmail.com>

Depends R (>= 3.5.0)

Imports methods, wordcloud (>= 2.5), stringi, Rcpp (>= 0.12.12), R6,
udpipe (>= 0.8.3), digest, data.table (>= 1.10.4), quanteda (>=
1.5.1), igraph, tokenbrowser (>= 0.1.5), RNewsflow (>= 1.2.1),
Matrix (>= 1.2), parallel, pbapply (>= 1.4), rsyntax (>= 0.1.1)

Suggests testthat, tm (>= 0.6), topicmodels, knitr, rmarkdown

LinkingTo Rcpp, RcppProgress

LazyData true

Encoding UTF-8

License GPL-3

URL https://github.com/kasperwelbers/corpustools

RoxygenNote 7.2.1

VignetteBuilder knitr

Config/pak/sysreqs libglpk-dev libicu-dev libpng-dev libxml2-dev

Repository https://kasperwelbers.r-universe.dev

1

https://github.com/kasperwelbers/corpustools

2 Contents

RemoteUrl https://github.com/kasperwelbers/corpustools

RemoteRef HEAD

RemoteSha 7610e29d573aa062e483bfc56296536d52991ddd

Contents
add_multitoken_label . 4
aggregate_rsyntax . 5
agg_label . 6
agg_tcorpus . 7
as.tcorpus . 8
as.tcorpus.default . 9
as.tcorpus.tCorpus . 9
backbone_filter . 10
browse_hits . 11
browse_texts . 12
calc_chi2 . 14
compare_corpus . 15
compare_documents . 16
compare_subset . 17
corenlp_tokens . 19
count_tcorpus . 19
create_tcorpus . 20
docfreq_filter . 24
dtm_compare . 25
dtm_wordcloud . 26
ego_semnet . 27
export_span_annotations . 28
feature_associations . 29
feature_stats . 31
fold_rsyntax . 31
freq_filter . 32
get_dtm . 33
get_global_i . 35
get_kwic . 36
get_stopwords . 37
laplace . 38
melt_quanteda_dict . 38
merge_tcorpora . 39
plot.contextHits . 40
plot.featureAssociations . 41
plot.featureHits . 42
plot.vocabularyComparison . 42
plot_semnet . 43
plot_words . 45
preprocess_tokens . 46
print.contextHits . 48

Contents 3

print.featureHits . 49
print.tCorpus . 49
refresh_tcorpus . 50
require_package . 50
search_contexts . 51
search_dictionary . 53
search_features . 55
semnet . 59
semnet_window . 60
set_network_attributes . 61
sgt . 62
show_udpipe_models . 63
sotu_texts . 63
stopwords_list . 64
subset.tCorpus . 64
subset_query . 65
summary.contextHits . 66
summary.featureHits . 66
summary.tCorpus . 67
tCorpus . 67
tCorpus$annotate_rsyntax . 68
tCorpus$code_dictionary . 69
tCorpus$code_features . 71
tCorpus$context . 72
tCorpus$deduplicate . 72
tCorpus$delete_columns . 74
tCorpus$feats_to_columns . 75
tCorpus$feature_subset . 75
tCorpus$fold_rsyntax . 76
tCorpus$get . 77
tCorpus$lda_fit . 79
tCorpus$merge . 80
tCorpus$preprocess . 81
tCorpus$replace_dictionary . 82
tCorpus$search_recode . 84
tCorpus$set . 85
tCorpus$set_levels . 86
tCorpus$set_name . 87
tCorpus$subset . 87
tCorpus$subset_query . 89
tCorpus$udpipe_clauses . 90
tCorpus$udpipe_quotes . 91
tCorpus_compare . 92
tCorpus_create . 92
tCorpus_data . 93
tCorpus_docsim . 94
tCorpus_features . 94
tCorpus_modify_by_reference . 95

4 add_multitoken_label

tCorpus_querying . 96
tCorpus_semnet . 96
tCorpus_topmod . 97
tc_plot_tree . 97
tc_sotu_udpipe . 98
tokens_to_tcorpus . 99
tokenWindowOccurence . 100
top_features . 101
transform_rsyntax . 102
udpipe_clause_tqueries . 103
udpipe_quote_tqueries . 104
udpipe_simplify . 104
udpipe_spanquote_tqueries . 105
udpipe_tcorpus . 106
untokenize . 108

Index 109

add_multitoken_label Choose and add multitoken strings based on multitoken categories

Description

Given a multitoken category (e.g., named entity ids), this function finds the most frequently occuring
string in this category and adds it as a label for the category

Usage

add_multitoken_label(
tc,
colloc_id,
feature = "token",
new_feature = sprintf("%s_l", colloc_id),
pref_subset = NULL

)

Arguments

tc a tcorpus object

colloc_id the data column containing the unique id for multitoken tokens

feature the name of the feature column

new_feature the name of the new feature column

pref_subset Optionally, a subset call, to specify a subset that has priority for finding the most
frequently occuring string

aggregate_rsyntax 5

aggregate_rsyntax Aggregate rsyntax annotations

Description

A method for aggregating rsyntax annotations. The intended purpose is to compute aggregate values
for a given label in an annotation column.

For example, you used annotate_rsyntax to add a column with subject-predicate labels, and now
you want to concatenate the tokens with these labels. With annotate_rsyntax you would first aggre-
gate the subject tokens, then aggregate the predicate tokens. By default (txt = T) the column with
concatenated tokens are added.

You can specify any aggregation function using any column in tc$tokens. So say you want to
perform a sentiment analysis on the quotes of politicians. You first used annotate_rsyntax to cre-
ate an annotation column ’quote’, that has the labels ’source’, ’verb’, and ’quote’. You also used
code_dictionary to add a column with unique politician ID’s and a column with sentiment scores.
Now you can aggregate the source tokens to get a single unique ID, and aggregate the quote tokens
to get a single sentiment score.

Usage

aggregate_rsyntax(
tc,
annotation,
...,
by_col = NULL,
txt = F,
labels = NULL,
rm_na = T

)

Arguments

tc a tCorpus

annotation The name of the rsyntax annotation column

... To aggregate columns for specific

by_col A character vector with other column names in tc$tokens to aggregate by.

txt If TRUE, add columns with concatenated tokens for each label. Can also be a
character vector specifying for which specific labels to create this column

labels Instead of using all labels, a character vector of labels can be given

rm_na If TRUE, remove rows with only NA values

Value

A data.table

6 agg_label

Examples

Not run:
tc = tc_sotu_udpipe$copy()
tc$udpipe_clauses()

subject_verb_predicate = aggregate_rsyntax(tc, 'clause', txt=TRUE)
head(subject_verb_predicate)

We can also add specific aggregation functions

count number of tokens in predicate
aggregate_rsyntax(tc, 'clause',

agg_label('predicate', n = length(token_id)))

same, but with txt for only the subject label
aggregate_rsyntax(tc, 'clause', txt='subject',

agg_label('predicate', n = length(token_id)))

example application: sentiment scores for specific subjects

first use queries to code subjects
tc$code_features(column = 'who',

query = c('I# I~s <this president>',
'we# we americans <american people>'))

then use dictionary to get sentiment scores
dict = melt_quanteda_dict(quanteda::data_dictionary_LSD2015)
dict$sentiment = ifelse(dict$code %in% c('negative','neg_positive'), -1, 1)
tc$code_dictionary(dict)

sent = aggregate_rsyntax(tc, 'clause', txt='predicate',
agg_label('subject', subject = na.omit(who)[1]),
agg_label('predicate', sentiment = mean(sentiment, na.rm=TRUE)))

head(sent)
sent[,list(sentiment=mean(sentiment, na.rm=TRUE), n=.N), by='subject']

End(Not run)

agg_label Helper function for aggregate_rsyntax

Description

This function is used within the aggregate_rsyntax function to facilitate aggregating by specific
labels.

Usage

agg_label(label, ...)

agg_tcorpus 7

Arguments

label The rsyntax label. Needs to be an existing value in the annotation column (as
specified when calling aggregate_rsyntax)

... Specify the new aggregated columns in name-value pairs. The name is the name
of the new column, and the value should be a function over a column in $tokens.
For example: subject = paste(token, collapse = ’ ’) would create the column
’subject’, of which the values are the concatenated tokens. See examples for
more.

Value

Not relevant. Should only be used within aggregate_rsyntax

Examples

tc = tc_sotu_udpipe$copy()
tc$udpipe_clauses()

count number of tokens in predicate
aggregate_rsyntax(tc, 'clause', txt=FALSE,

agg_label('predicate', n = length(token_id)))

agg_tcorpus Aggregate the tokens data

Description

This is a wrapper for the data.table aggregate function, for easy aggregation of the tokens data
grouped by columns in the tokens or meta data. The .id argument is an important addition, because
token annotation often contain values that span multiple rows.

Usage

agg_tcorpus(tc, ..., by = NULL, .id = NULL, wide = T)

Arguments

tc A tCorpus

... The name of the aggregated column and the function over an existing column
are given as a name value pair. For example, count = length(token) will count
the number of tokens in each group, and sentiment = mean(sentiment, na.rm=T)
will calculate the mean score for a column with sentiment scores.

by A character vector with column names from the tokens and/or meta data.

8 as.tcorpus

.id If an id column is given, only rows for which this id is not NA are used, and
only one row for each id is used. This prevents double counting of values in
annotations that span multiple rows. For example, a sentiment dictionary can
match the tokens "not good", in which case the sentiment score (-1) will be
assigned to both tokens. These annotations should have an _id column that
indicates the unique matches.

wide Should results be in wide or long format?

Value

A data table

Examples

tc = create_tcorpus(sotu_texts, doc_col='id')

library(quanteda)
dict = data_dictionary_LSD2015
dict = melt_quanteda_dict(dict)
dict$sentiment = ifelse(dict$code %in% c('positive','neg_negative'), 1, -1)
tc$code_dictionary(dict)

agg_tcorpus(tc, N = length(sentiment), sent = mean(sentiment), .id='code_id')
agg_tcorpus(tc, sent = mean(sentiment), .id='code_id', by='president')
agg_tcorpus(tc, sent = mean(sentiment), .id='code_id', by=c('president', 'token'))

as.tcorpus Force an object to be a tCorpus class

Description

Force an object to be a tCorpus class

Usage

as.tcorpus(x, ...)

Arguments

x the object to be forced

... not used

as.tcorpus.default 9

as.tcorpus.default Force an object to be a tCorpus class

Description

Force an object to be a tCorpus class

Usage

Default S3 method:
as.tcorpus(x, ...)

Arguments

x the object to be forced

... not used

Examples

Not run:
x = c('First text','Second text')
as.tcorpus(x) ## x is not a tCorpus object

End(Not run)

as.tcorpus.tCorpus Force an object to be a tCorpus class

Description

Force an object to be a tCorpus class

Usage

S3 method for class 'tCorpus'
as.tcorpus(x, ...)

Arguments

x the object to be forced

... not used

Examples

tc = create_tcorpus(c('First text', 'Second text'))
as.tcorpus(tc)

10 backbone_filter

backbone_filter Extract the backbone of a network.

Description

Based on the following paper: Serrano, M. A., Boguna, M., & Vespignani, A. (2009). Extracting
the multiscale backbone of complex weighted networks. Proceedings of the National Academy of
Sciences, 106(16), 6483-6488.

Usage

backbone_filter(
g,
alpha = 0.05,
direction = "none",
delete_isolates = T,
max_vertices = NULL,
use_original_alpha = T,
k_is_n = F

)

Arguments

g A graph in the ‘Igraph‘ format.

alpha The threshold for the alpha. Can be interpreted similar to a p value (see paper
for clarrification).

direction direction = ’none’ can be used for both directed and undirected networks, and
is (supposed to be) the disparity filter proposed in Serrano et al. (2009) is used.
By setting to ’in’ or ’out’, the alpha is only calculated for out or in edges. This
is an experimental use of the backbone extraction (so beware!) but it seems a
logical application.

delete_isolates

If TRUE, vertices with degree 0 (i.e. no edges) are deleted.

max_vertices Optional. Set a maximum number of vertices for the network to be produced.
The alpha is then automatically lowered to the point that only the given number
of vertices remains connected (degree > 0). This can be usefull if the purpose is
to make an interpretation friendly network. See e.g., http://jcom.sissa.it/archive/14/01/JCOM_1401_2015_A01

use_original_alpha

if max_vertices is not NULL, this determines whether the lower alpha for se-
lecting the top vertices is also used as a threshold for the edges, or whether the
original value given in the alpha parameter is used.

k_is_n the disparity filter method for backbone extraction uses the number of existing
edges (k) for each node, which can be arbitraty if there are many very weak ties,
which is often the case in a co-occurence network. By setting k_is_n to TRUE,
it is ’assumed’ that all nodes are connected, which makes sense from a language
model perspective (i.e. probability for co-occurence is never zero)

browse_hits 11

Value

A graph in the Igraph format

Examples

tc = create_tcorpus(sotu_texts, doc_column = 'id')
tc$preprocess('token','feature', remove_stopwords = TRUE, use_stemming = TRUE, min_docfreq = 10)

g = semnet_window(tc, 'feature', window.size = 10)
igraph::vcount(g)
igraph::ecount(g)
gb = backbone_filter(g, max_vertices = 100)
igraph::vcount(gb)
igraph::ecount(gb)
plot_semnet(gb)

browse_hits View hits in a browser

Description

Creates a static HTML file to view the query hits in the tcorpus in full text mode.

Usage

browse_hits(
tc,
hits,
token_col = "token",
n = 500,
select = c("first", "random"),
header = "",
subheader = NULL,
meta_cols = NULL,
seed = NA,
view = T,
filename = NULL

)

Arguments

tc a tCorpus

hits a featureHits object, as returned by search_features

token_col The name of the column in tc$tokens that contain the token text

n If doc_ids is NULL, Only n of the results are printed (to prevent accidentally
making huge browsers).

12 browse_texts

select If n is smaller than the number of documents in tc, select determines how the n
documents are selected

header Optionally, a title presented at the top of the browser

subheader Optionally, overwrite the subheader. By default the subheader reports the num-
ber of documents

meta_cols A character vector with names of columns in tc$meta, used to only show the
selected columns

seed If select is "random", seed can be used to set a random seed

view If TRUE (default), view the browser in the Viewer window (turn off if this is not
supported)

filename Optionally, save the browser at a specified location

Value

The url for the file location is returned (invisibly)

Examples

tc = create_tcorpus(sotu_texts, doc_column='id')
hits = search_features(tc, c("Terrorism# terroris*", "War# war*"))
browse_hits(tc, hits)

browse_texts Create and view a full text browser

Description

Creates a static HTML file to view the texts in the tcorpus in full text mode.

Usage

browse_texts(
tc,
doc_ids = NULL,
token_col = "token",
n = 500,
select = c("first", "random"),
header = "",
subheader = NULL,
highlight = NULL,
scale = NULL,
category = NULL,
rsyntax = NULL,
value = NULL,
meta_cols = NULL,

browse_texts 13

seed = NA,
nav = NULL,
top_nav = NULL,
thres_nav = 1,
view = T,
highlight_col = "yellow",
scale_col = c("red", "blue", "green"),
filename = NULL

)

Arguments

tc a tCorpus

doc_ids A vector with document ids to view

token_col The name of the column in tc$tokens that contain the token text

n Only n of the results are printed (to prevent accidentally making huge browsers).

select If n is smaller than the number of documents in tc, select determines how the n
documents are selected

header Optionally, a title presented at the top of the browser

subheader Optionally, overwrite the subheader. By default the subheader reports the num-
ber of documents

highlight Highlighe mode: provide the name of a numeric column in tc$tokens with values
between 0 and 1, used to highlight tokens. Can also be a character vector, in
which case al non-NA values are highlighted

scale Scale mode: provide the name of a numeric column in tc$tokens with values
between -1 and 1, used to color tokens on a scale (set colors with scale_col)

category Category mode: provide the name of a character or factor column in tc$tokens.
Each unique value will have its own color, and navigation for categories will be
added (nav cannot be used with this option)

rsyntax rsyntax mode: provide the name of an rsyntax annotation column (see annotate_rsyntax)

value rsyntax mode argument: if rsyntax mode is used, value can be a character vector
with values in the rsyntax annotation column. If used, only these values are fully
colored, and the other (non NA) values only have border colors.

meta_cols A character vector with names of columns in tc$meta, used to only show the
selected columns

seed If select is "random", seed can be used to set a random seed. After sampling the
seed is re-initialized with set.seed(NULL).

nav Optionally, a column in tc$meta to add navigation (only supports simple filtering
on unique values). This is not possible if category is used.

top_nav A number. If navigation based on token annotations is used, filters will only
apply to top x values with highest token occurence in a document

thres_nav Like top_nav, but specifying a threshold for the minimum number of tokens.

view If TRUE (default), view the browser in the Viewer window (turn off if this is not
supported)

14 calc_chi2

highlight_col If highlight is used, the color for highlighting

scale_col If scale is used, a vector with 2 or more colors used to create a color ramp. That
is, -1 is first color, +1 is last color, if three colors are given 0 matches the middle
color, and colors in between are interpolated.

filename Optionally, save the browser at a specified location

Value

The url for the file location is returned (invisibly)

Examples

tc = create_tcorpus(sotu_texts, doc_column='id')

queries = c('War# war soldier* weapon*',
'Economy# econom* market* tax*')

tc$code_features(queries)

browse_texts(tc, category='code')

calc_chi2 Vectorized computation of chi^2 statistic for a 2x2 crosstab containing
the values [a, b] [c, d]

Description

Vectorized computation of chi^2 statistic for a 2x2 crosstab containing the values [a, b] [c, d]

Usage

calc_chi2(a, b, c, d, correct = T, cochrans_criteria = F)

Arguments

a topleft value of the table

b topright value

c bottomleft value

d bottomright value

correct if TRUE, use yates correction. Can be a vector of length a (i.e. the number of
tables)

cochrans_criteria

if TRUE, check if cochrans_criteria indicate that a correction should be used.
This overrides the correct parameter

compare_corpus 15

compare_corpus Compare tCorpus vocabulary to that of another (reference) tCorpus

Description

Compare tCorpus vocabulary to that of another (reference) tCorpus

Usage

compare_corpus(
tc,
tc_y,
feature,
smooth = 0.1,
min_ratio = NULL,
min_chi2 = NULL,
is_subset = F,
yates_cor = c("auto", "yes", "no"),
what = c("freq", "docfreq", "cooccurrence")

)

Arguments

tc a tCorpus

tc_y the reference tCorpus

feature the column name of the feature that is to be compared

smooth Laplace smoothing is used for the calculation of the probabilities. Here you can
set the added (pseuocount) value.

min_ratio threshold for the ratio value, which is the ratio of the relative frequency of a term
in dtm.x and dtm.y

min_chi2 threshold for the chi^2 value

is_subset Specify whether tc is a subset of tc_y. In this case, the term frequencies of tc
will be subtracted from the term frequencies in tc_y

yates_cor mode for using yates correctsion in the chi^2 calculation. Can be turned on
("yes") or off ("no"), or set to "auto", in which case cochrans rule is used to
determine whether yates’ correction is used.

what choose whether to compare the frequency ("freq") of terms, or the document
frequency ("docfreq"). This also affects how chi^2 is calculated, comparing
either freq relative to vocabulary size or docfreq relative to corpus size (N)

Value

A vocabularyComparison object

16 compare_documents

Examples

tc = create_tcorpus(sotu_texts, doc_column = 'id')

tc$preprocess('token', 'feature', remove_stopwords = TRUE, use_stemming = TRUE)

obama = tc$subset_meta(president == 'Barack Obama', copy=TRUE)
bush = tc$subset_meta(president == 'George W. Bush', copy=TRUE)

comp = compare_corpus(tc, bush, 'feature')
comp = comp[order(-comp$chi),]
head(comp)
plot(comp)

compare_documents Calculate the similarity of documents

Description

Calculate the similarity of documents

Usage

compare_documents(
tc,
feature = "token",
date_col = NULL,
meta_cols = NULL,
hour_window = c(24),
measure = c("cosine", "overlap_pct"),
min_similarity = 0,
weight = c("norm_tfidf", "tfidf", "termfreq", "docfreq"),
ngrams = NA,
from_subset = NULL,
to_subset = NULL,
return_igraph = T,
verbose = T

)

Arguments

tc A tCorpus

feature the column name of the feature that is to be used for the comparison.

date_col a date with time in POSIXct. If given together with hour_window, only docu-
ments within the given hour_window will be compared.

meta_cols a character vector with columns in the meta data / docvars. If given, only docu-
ments for which these values are identical are compared

compare_subset 17

hour_window A vector of length 1 or 2. If length is 1, the same value is used for the left and
right side of the window. If length is 2, the first and second value determine the
left and right side. For example, the value 12 will compare each document to all
documents between the previous and next 12 hours, and c(-10, 36) will compare
each document to all documents between the previous 10 and the next 36 hours.

measure the similarity measure. Currently supports cosine similarity (symmetric) and
overlap_pct (asymmetric)

min_similarity A threshold for the similarity score

weight a weighting scheme for the document-term matrix. Default is term-frequency
inverse document frequency with normalized rows (document length).

ngrams an integer. If given, ngrams of this length are used

from_subset An expression to select a subset. If given, only this subset will be compared to
other documents

to_subset An expression to select a subset. If given, documents are only compared to this
subset

return_igraph If TRUE, return as an igraph network. Otherwise, return as a list with the edge-
list and meta data.

verbose If TRUE, report progress

Value

An igraph graph in which nodes are documents and edges represent similarity scores

Examples

d = data.frame(text = c('a b c d e',
'e f g h i j k',
'a b c'),

date = as.POSIXct(c('2010-01-01','2010-01-01','2012-01-01')))
tc = create_tcorpus(d)

g = compare_documents(tc)
igraph::get.data.frame(g)

g = compare_documents(tc, measure = 'overlap_pct')
igraph::get.data.frame(g)

g = compare_documents(tc, date_col = 'date', hour_window = c(0,36))
igraph::get.data.frame(g)

compare_subset Compare vocabulary of a subset of a tCorpus to the rest of the tCorpus

Description

Compare vocabulary of a subset of a tCorpus to the rest of the tCorpus

18 compare_subset

Usage

compare_subset(
tc,
feature,
subset_x = NULL,
subset_meta_x = NULL,
query_x = NULL,
query_feature = "token",
smooth = 0.1,
min_ratio = NULL,
min_chi2 = NULL,
yates_cor = c("auto", "yes", "no"),
what = c("freq", "docfreq", "cooccurrence")

)

Arguments

tc a tCorpus

feature the column name of the feature that is to be compared

subset_x an expression to subset the tCorpus. The vocabulary of the subset will be com-
pared to the rest of the tCorpus

subset_meta_x like subset_x, but using using the meta data

query_x like subset_x, but using a query search to select documents (see search_contexts)

query_feature if query_x is used, the column name of the feature used in the query search.

smooth Laplace smoothing is used for the calculation of the probabilities. Here you can
set the added (pseuocount) value.

min_ratio threshold for the ratio value, which is the ratio of the relative frequency of a term
in dtm.x and dtm.y

min_chi2 threshold for the chi^2 value

yates_cor mode for using yates correctsion in the chi^2 calculation. Can be turned on
("yes") or off ("no"), or set to "auto", in which case cochrans rule is used to
determine whether yates’ correction is used.

what choose whether to compare the frequency ("freq") of terms, or the document
frequency ("docfreq"). This also affects how chi^2 is calculated, comparing
either freq relative to vocabulary size or docfreq relative to corpus size (N)

Value

A vocabularyComparison object

Examples

tc = create_tcorpus(sotu_texts, doc_column = 'id')

tc$preprocess('token', 'feature', remove_stopwords = TRUE, use_stemming = TRUE)

corenlp_tokens 19

comp = compare_subset(tc, 'feature', subset_meta_x = president == 'Barack Obama')
comp = comp[order(-comp$chi),]
head(comp)
plot(comp)

comp = compare_subset(tc, 'feature', query_x = 'terroris*')
comp = comp[order(-comp$chi),]
head(comp, 10)

corenlp_tokens coreNLP example sentences

Description

coreNLP example sentences

Usage

data(corenlp_tokens)

Format

data.frame

count_tcorpus Count results of search hits, or of a given feature in tokens

Description

Count results of search hits, or of a given feature in tokens

Usage

count_tcorpus(
tc,
meta_cols = NULL,
hits = NULL,
feature = NULL,
count = c("documents", "tokens", "hits"),
wide = T

)

20 create_tcorpus

Arguments

tc A tCorpus

meta_cols The columns in the meta data by which the results should be grouped

hits featureHits or contextHits (output of search_features, search_dictionary
or search_contexts)

feature Instead of hits, a specific feature column can be selected.

count How should the results be counted? Number of documents, tokens, or unique
hits. The difference between tokens and hits is that hits can encompass multiple
tokens (e.g., "Bob Smith" is 1 hit and 2 tokens).

wide Should results be in wide or long format?

Value

A data table

Examples

tc = create_tcorpus(sotu_texts, doc_col='id')
hits = search_features(tc, c("US# <united states>", "Economy# econom*"))
count_tcorpus(tc, hits=hits)
count_tcorpus(tc, hits=hits, meta_cols='president')
count_tcorpus(tc, hits=hits, meta_cols='president', wide=FALSE)

create_tcorpus Create a tCorpus

Description

Create a tCorpus from raw text input. Input can be a character (or factor) vector, data.frame or
quanteda corpus. If a data.frame is given, all columns other than the document id and text columns
are included as meta data. If a quanteda corpus is given, the ids and texts are already specified, and
the docvars will be included in the tCorpus as meta data.

Usage

create_tcorpus(x, ...)

S3 method for class 'character'
create_tcorpus(
x,
doc_id = 1:length(x),
meta = NULL,
udpipe_model = NULL,
split_sentences = F,
max_sentences = NULL,

create_tcorpus 21

max_tokens = NULL,
udpipe_model_path = getwd(),
udpipe_cache = 3,
udpipe_cores = NULL,
udpipe_batchsize = 50,
use_parser = F,
remember_spaces = F,
verbose = T,
...

)

S3 method for class 'data.frame'
create_tcorpus(
x,
text_columns = "text",
doc_column = "doc_id",
udpipe_model = NULL,
split_sentences = F,
max_sentences = NULL,
max_tokens = NULL,
udpipe_model_path = getwd(),
udpipe_cache = 3,
udpipe_cores = NULL,
udpipe_batchsize = 50,
use_parser = F,
remember_spaces = F,
verbose = T,
...

)

S3 method for class 'factor'
create_tcorpus(x, ...)

S3 method for class 'corpus'
create_tcorpus(x, ...)

Arguments

x main input. can be a character (or factor) vector where each value is a full text,
or a data.frame that has a column that contains full texts. If x (or a text_column
in x) has leading or trailing whitespace, this is cut off (and you’ll get a warning
about it).

... Arguments passed to create_tcorpus.character

doc_id if x is a character/factor vector, doc_id can be used to specify document ids.
This has to be a vector of the same length as x

meta A data.frame with document meta information (e.g., date, source). The rows of
the data.frame need to match the values of x

22 create_tcorpus

udpipe_model Optionally, the name of a Universal Dependencies language model (e.g., "english-
ewt", "dutch-alpino"), to use the udpipe package (udpipe_annotate) for natu-
ral language processing. You can use show_udpipe_models to get an overview
of the available models. For more information about udpipe and performance
benchmarks of the UD models, see the GitHub page of the udpipe package.

split_sentences

Logical. If TRUE, the sentence number of tokens is also computed. (only if
udpipe_model is not used)

max_sentences An integer. Limits the number of sentences per document to the specified num-
ber. If set when split_sentences == FALSE, split_sentences will be set to TRUE.

max_tokens An integer. Limits the number of tokens per document to the specified number
udpipe_model_path

If udpipe_model is used, this path wil be used to look for the model, and if
the model doesn’t yet exist it will be downloaded to this location. Defaults to
working directory

udpipe_cache The number of persistent caches to keep for inputs of udpipe. The caches store
tokens in batches. This way, if a lot of data has to be parsed, or if R crashes,
udpipe can continue from the latest batch instead of start over. The caches are
stored in the corpustools_data folder (in udpipe_model_path). Only the most
recent [udpipe_caches] caches will be stored.

udpipe_cores If udpipe_model is used, this sets the number of parallel cores. If not spec-
ified, will use the same number of cores as used by data.table (or limited to
OMP_THREAD_LIMIT).

udpipe_batchsize

In order to report progress and cache results, texts are parsed with udpipe in
batches of 50. The price is that there will be some overhead for each batch, so
for very large jobs it can be faster to increase the batchsize. If the number of
texts divided by the number of parallel cores is lower than the batchsize, the
texts are evenly distributed over cores.

use_parser If TRUE, use dependency parser (only if udpipe_model is used)
remember_spaces

If TRUE, a column with spaces after each token and column with the start and
end positions of tokens are included. Can turn it of for a bit more speed and less
memory use, but some features won’t work.

verbose If TRUE, report progress. Only if x is large enough to require multiple sequential
batches

text_columns if x is a data.frame, this specifies the column(s) that contains text. If multiple
columns are used, they are pasted together separated by a double line break. If
remember_spaces is true, a "field" column is also added that show the column
name for each token, and the start/end positions are local within these fields

doc_column If x is a data.frame, this specifies the column with the document ids.

Details

By default, texts will only be tokenized, and basic preprocessing techniques (lowercasing, stem-
ming) can be applied with the preprocess method. Alternatively, the udpipe package can be used
to apply more advanced NLP preprocessing, by using the udpipe_model argument.

https://github.com/bnosac/udpipe

create_tcorpus 23

For certain advanced features you need to set remember_spaces to true. We are often used to for-
getting all about spaces when we do bag-of-word type stuff, and that’s sad. With remember_spaces,
the exact position of each token is remembered, including what type of space follows the token
(like a space or a line break), and what text field the token came from (if multiple text_columns are
specified in create_tcorpus.data.frame)

Examples

...
tc = create_tcorpus(c('Text one first sentence. Text one second sentence', 'Text two'))
tc$tokens

tc = create_tcorpus(c('Text one first sentence. Text one second sentence', 'Text two'),
split_sentences = TRUE)

tc$tokens

with meta (easier to S3 method for data.frame)
meta = data.frame(doc_id = c(1,2), source = c('a','b'))
tc = create_tcorpus(c('Text one first sentence. Text one second sentence', 'Text two'),

split_sentences = TRUE,
doc_id = c(1,2),
meta = meta)

tc
d = data.frame(text = c('Text one first sentence. Text one second sentence.',

'Text two', 'Text three'),
date = c('2010-01-01','2010-01-01','2012-01-01'),
source = c('A','B','B'))

tc = create_tcorpus(d, split_sentences = TRUE)
tc
tc$tokens

use multiple text columns
d$headline = c('Head one', 'Head two', 'Head three')
use custom doc_id
d$doc_id = c('#1', '#2', '#3')

tc = create_tcorpus(d, text_columns = c('headline','text'), doc_column = 'doc_id',
split_sentences = TRUE)

tc
tc$tokens
It makes little sense to have full texts as factors, but it tends to happen.
The create_tcorpus S3 method for factors is essentially identical to the
method for a character vector.
text = factor(c('Text one first sentence', 'Text one second sentence'))
tc = create_tcorpus(text)
tc$tokens

library(quanteda)
create_tcorpus(data_corpus_inaugural)

24 docfreq_filter

docfreq_filter Support function for subset method

Description

Support function to enable subsetting by document frequency stats of a given feature. Should only
be used within the tCorpus subset method, or any tCorpus method that supports a subset argument.

Usage

docfreq_filter(
x,
min = -Inf,
max = Inf,
top = NULL,
bottom = NULL,
doc_id = parent.frame()$doc_id

)

Arguments

x the name of the feature column. Can be given as a call or a string.

min A number, setting the minimum document frequency value

max A number, setting the maximum document frequency value

top A number. If given, only the top x features with the highest document frequency
are TRUE

bottom A number. If given, only the bottom x features with the highest document fre-
quency are TRUE

doc_id Added for reference, but should not be used. Automatically takes doc_id from
tCorpus if the docfreq_filter function is used within the subset method.

Examples

tc = create_tcorpus(c('a a a b b', 'a a c c'))

tc$tokens
tc$subset(subset = docfreq_filter(token, min=2))
tc$tokens

dtm_compare 25

dtm_compare Compare two document term matrices

Description

Compare two document term matrices

Usage

dtm_compare(
dtm.x,
dtm.y = NULL,
smooth = 0.1,
min_ratio = NULL,
min_chi2 = NULL,
select_rows = NULL,
yates_cor = c("auto", "yes", "no"),
x_is_subset = F,
what = c("freq", "docfreq", "cooccurrence")

)

Arguments

dtm.x the main document-term matrix

dtm.y the ’reference’ document-term matrix

smooth Laplace smoothing is used for the calculation of the probabilities. Here you can
set the added (pseuocount) value.

min_ratio threshold for the ratio value, which is the ratio of the relative frequency of a term
in dtm.x and dtm.y

min_chi2 threshold for the chi^2 value

select_rows Alternative to using dtm.y. Has to be a vector with rownames, by which

yates_cor mode for using yates correctsion in the chi^2 calculation. Can be turned on
("yes") or off ("no"), or set to "auto", in which case cochrans rule is used to
determine whether yates’ correction is used.

x_is_subset Specify whether dtm.x is a subset of dtm.y. In this case, the term frequencies of
dtm.x will be subtracted from the term frequencies in dtm.y

what choose whether to compare the frequency ("freq") of terms, or the document
frequency ("docfreq"). This also affects how chi^2 is calculated, comparing
either freq relative to vocabulary size or docfreq relative to corpus size (N)

Value

A data frame with rows corresponding to the terms in dtm and the statistics in the columns

26 dtm_wordcloud

dtm_wordcloud Plot a word cloud from a dtm

Description

Compute the term frequencies for the dtm and plot a word cloud with the top n topics You can either
supply a document-term matrix or provide terms and freqs directly (in which case this is an alias
for wordcloud::wordcloud with sensible defaults)

Usage

dtm_wordcloud(
dtm = NULL,
nterms = 100,
freq.fun = NULL,
terms = NULL,
freqs = NULL,
scale = c(4, 0.5),
min.freq = 1,
rot.per = 0.15,
...

)

Arguments

dtm the document-term matrix

nterms the amount of words to plot (default 100)

freq.fun if given, will be applied to the frequenies (e.g. sqrt)

terms the terms to plot, ignored if dtm is given

freqs the frequencies to plot, ignored if dtm is given

scale the scale to plot (see wordcloud::wordcloud)

min.freq the minimum frquency to include (see wordcloud::wordcloud)

rot.per the percentage of vertical words (see wordcloud::wordcloud)

... other arguments passed to wordcloud::wordcloud

Examples

create DTM
tc = create_tcorpus(sotu_texts[1:100,], doc_column = 'id')
tc$preprocess('token', 'feature', remove_stopwords = TRUE)
dtm = get_dtm(tc, 'feature')

dtm_wordcloud(dtm, nterms = 20)

ego_semnet 27

or without a DTM
dtm_wordcloud(terms = c('in','the','cloud'), freqs = c(2,5,10))

ego_semnet Create an ego network

Description

Create an ego network from an igraph object.

Usage

ego_semnet(
g,
vertex_names,
depth = 1,
only_filter_vertices = T,
weight_attr = "weight",
min_weight = NULL,
top_edges = NULL,
max_edges_level = NULL,
directed = c("out", "in")

)

Arguments

g an igraph object

vertex_names a character string with the names of the ego vertices/nodes

depth the number of degrees from the ego vertices/nodes that are included. 1 means
that only the direct neighbours are included

only_filter_vertices

if True, the algorithm will only filter out vertices/nodes that are not in the ego
network. If False (default) then it also filters out the edges.

weight_attr the name of the edge attribute. if NA, no weight is used, and min_weight and
top_edges are ignored

min_weight a number indicating the minimum weight

top_edges for each vertex within the given depth, only keep the top n edges with the
strongest edge weight. Can also be a vector of the same length as the depth
value, in which case a different value is used at each level: first value for level
1, second value for level 2, etc.

max_edges_level

the maximum number of edges to be added at each level of depth.

directed if the network is directed, specify whether ’out’ degrees or ’in’ degrees are used

28 export_span_annotations

Details

The function is similar to the ego function in igraph, but with some notable differences. Firstly, if
multiple vertex_names are given, the ego network for both is given in 1 network (whereas igraph
creates a list of networks). Secondly, the min_weight and top_edges parameters can be used to
focus on the strongest edges.

Examples

tc = create_tcorpus(c('a b c', 'd e f', 'a d'))
g = semnet(tc, 'token')

igraph::get.data.frame(g)
plot_semnet(g)
only keep nodes directly connected to given node
g_ego = ego_semnet(g, 'e')
igraph::get.data.frame(g_ego)
plot_semnet(g_ego)

only keep edges directly connected to given node
g_ego = ego_semnet(g, 'e', only_filter_vertices = FALSE)
igraph::get.data.frame(g_ego)
plot_semnet(g_ego)

only keep nodes connected to given node with a specified degree (i.e. distance)
g_ego = ego_semnet(g, 'e', depth = 2)
igraph::get.data.frame(g_ego)
plot_semnet(g_ego)

export_span_annotations

Export span annotations

Description

Export columns from a tCorpus as span annotations (annotations over a span of text). The annota-
tions are returned as a data.table where each row is an annotation, with columns: doc_id, variable,
value, field, offset, length and text. The key purpose is that these span annotations are linked to
exact character positions in the text. This also means that this function can only be used if position
information is available (i.e. if remember_spaces=T was used when creating the tCorpus)

Usage

export_span_annotations(tc, variables)

Arguments

tc A tCorpus, created with create_tcorpus, where remember_spaces must have
been set to TRUE

variables A character vector with variables (columns in tc$tokens) to export

feature_associations 29

Details

Note that if there are spans with gaps in them (e.g. based on proximity queries), they are split into
different annotations. Thus some information can be lost.

Value

A data.table where each row is a span annotation, with columns: doc_id, variable, value, field,
offset, length, text

Examples

tc = create_tcorpus(sotu_texts, c('president','text'), doc_column='id', remember_spaces=TRUE)
tc$code_features(c('war# war peace', 'us being# <(i we) (am are)>'))
export_span_annotations(tc, 'code')

feature_associations Get common nearby features given a query or query hits

Description

Get common nearby features given a query or query hits

Usage

feature_associations(
tc,
feature,
query = NULL,
hits = NULL,
query_feature = "token",
window = 15,
n = 25,
min_freq = 1,
sort_by = c("chi2", "ratio", "freq"),
subset = NULL,
subset_meta = NULL,
include_self = F

)

Arguments

tc a tCorpus

feature The name of the feature column in $tokens

query A character string that is a query. See search_features for documentation of the
query language.

hits Alternatively, instead of giving a query, the results of search_features can be
used.

30 feature_associations

query_feature If query is used, the column in $tokens on which the query is performed. By
default uses ’token’

window The size of the word window (i.e. the number of words next to the feature)

n the top n of associated features

min_freq Optionally, ignore features that occur less than min_freq times

sort_by The value by which to sort the features

subset A call (or character string of a call) as one would normally pass to subset.tCorpus.
If given, the keyword has to occur within the subset. This is for instance usefull
to only look in named entity POS tags when searching for people or organiza-
tion. Note that the condition does not have to occur within the subset.

subset_meta A call (or character string of a call) as one would normally pass to the sub-
set_meta parameter of subset.tCorpus. If given, the keyword has to occur within
the subset documents. This is for instance usefull to make queries date depen-
dent. For example, in a longitudinal analysis of politicians, it is often required
to take changing functions and/or party affiliations into account. This can be
accomplished by using subset_meta = "date > xxx & date < xxx" (given that the
appropriate date column exists in the meta data).

include_self If True, include the feature itself in the output

Value

a data.frame

Examples

tc = create_tcorpus(sotu_texts, doc_column = 'id')
tc$preprocess()

directly from query
topf = feature_associations(tc, 'feature', 'war')
head(topf, 20) ## frequent words close to "war"

adjust window size
topf = feature_associations(tc, 'feature', 'war', window = 5)
head(topf, 20) ## frequent words very close (five tokens) to "war"

you can also first perform search_features, to get hits for (complex) queries
hits = search_features(tc, '"war terror"~10')
topf = feature_associations(tc, 'feature', hits = hits)
head(topf, 20) ## frequent words close to the combination of "war" and "terror" within 10 words

feature_stats 31

feature_stats Feature statistics

Description

Compute a number of useful statistics for features: term frequency, idf, etc.

Usage

feature_stats(tc, feature, context_level = c("document", "sentence"))

Arguments

tc a tCorpus

feature The name of the feature column

context_level Should results be returned at document or sentence level

Value

a data.frame

Examples

tc = create_tcorpus(c('Text one first sentence. Text one second sentence', 'Text two'),
split_sentences = TRUE)

fs = feature_stats(tc, 'token')
head(fs)
fs = feature_stats(tc, 'token', context_level = 'sentence')
head(fs)

fold_rsyntax Fold rsyntax annotations

Description

If a tCorpus has rsyntax annotations (see annotate_rsyntax), it can be convenient to aggregate
tokens that have a certain semantic label. For example, if you have a query for labeling "source"
and "quote", you can add an aggegated value for the sources (such as a unique ID) as a column, and
then remove the quote tokens.

Usage

fold_rsyntax(tc, annotation, by_label, ..., txt = F, rm_by = T)

32 freq_filter

Arguments

tc A tCorpus

annotation The name of an rsyntax annotation column

by_label The labels in this column for which you want to aggregate the tokens

... Specify the new aggregated columns in name-value pairs. The name is the name
of the new column, and the value should be a function over a column in $tokens.
For example: subject = paste(token, collapse = ’ ’) would create the column
’subject’, of which the values are the concatenated tokens. See examples for
more.

txt If TRUE, add _txt column with concatenated tokens for by_label.

rm_by If TRUE (default), remove the column(s) specified in by_label

Value

a transformed tCorpus

Examples

tc = tc_sotu_udpipe$copy()
tc$udpipe_clauses()

fold_rsyntax(tc, 'clause', by_label = 'subject', subject = paste(token, collapse=' '))

freq_filter Support function for subset method

Description

Support function to enable subsetting by frequency stats of a given feature. Should only be used
within the tCorpus subset method, or any tCorpus method that supports a subset argument.

Usage

freq_filter(x, min = -Inf, max = Inf, top = NULL, bottom = NULL)

Arguments

x the name of the feature column. Can be given as a call or a string.

min A number, setting the minimum frequency value

max A number, setting the maximum frequency value

top A number. If given, only the top x features with the highest frequency are TRUE

bottom A number. If given, only the bottom x features with the highest frequency are
TRUE

get_dtm 33

Examples

tc = create_tcorpus(c('a a a b b'))

tc$tokens
tc$subset(subset = freq_filter(token, min=3))
tc$tokens

get_dtm Create a document term matrix.

Description

Create a document term matrix. The default output is a sparse matrix (Matrix, TsparseMatrix).
Alternatively, the dtm style from the tm and quanteda package can be used.

The dfm function is shorthand for using quanteda’s dfm (document feature matrix) class. The meta
data in the tcorpus is then automatically added as docvars in the dfm.

Usage

get_dtm(
tc,
feature,
context_level = c("document", "sentence"),
weight = c("termfreq", "docfreq", "tfidf", "norm_tfidf"),
drop_empty_terms = T,
form = c("Matrix", "tm_dtm", "quanteda_dfm"),
subset_tokens = NULL,
subset_meta = NULL,
context = NULL,
context_labels = T,
feature_labels = T,
ngrams = NA,
ngram_before_subset = F

)

get_dfm(
tc,
feature,
context_level = c("document", "sentence"),
weight = c("termfreq", "docfreq", "tfidf", "norm_tfidf"),
drop_empty_terms = T,
subset_tokens = NULL,
subset_meta = NULL,
context = NULL,
context_labels = T,
feature_labels = T,
ngrams = NA,

34 get_dtm

ngram_before_subset = F
)

Arguments

tc a tCorpus

feature The name of the feature column

context_level Select whether the rows of the dtm should represent "documents" or "sentences".

weight Select the weighting scheme for the DTM. Currently supports term frequency
(termfreq), document frequency (docfreq), term frequency inverse document
frequency (tfidf) and tfidf with normalized document vectors.

drop_empty_terms

If True, tokens that do not occur (i.e. column where sum is 0) are ignored.

form The output format. Default is a sparse matrix in the dgTMatrix class from the
Matrix package. Alternatives are tm_dtm for a DocumentTermMatrix in the
tm package format or quanteda_dfm for the document feature matrix from the
quanteda package.

subset_tokens A subset call to select which rows to use in the DTM

subset_meta A subset call for the meta data, to select which documents to use in the DTM

context Instead of using the document or sentence context, an custom context can be
specified. Has to be a vector of the same length as the number of tokens, that
serves as the index column. Each unique value will be a row in the DTM.

context_labels If False, the DTM will not be given rownames

feature_labels If False, the DTM will not be given column names

ngrams Optionally, use ngrams instead of individual tokens. This is more memory effi-
cient than first creating an ngram feature in the tCorpus.

ngram_before_subset

If a subset is used, ngrams can be made before the subset, in which case an
ngram can contain tokens that have been filtered out after the subset. Alterna-
tively, if ngrams are made after the subset, ngrams will span over the gaps of
tokens that are filtered out.

Value

A document term matrix, in the format specified in the form argument

Examples

tc = create_tcorpus(c("First text first sentence. First text first sentence.",
"Second text first sentence"), doc_column = 'id', split_sentences = TRUE)

Perform additional preprocessing on the 'token' column, and save as the 'feature' column
tc$preprocess('token', 'feature', remove_stopwords = TRUE, use_stemming = TRUE)
tc$tokens

default: regular sparse matrix, using the Matrix package

get_global_i 35

m = get_dtm(tc, 'feature')
class(m)
m

alternatively, create quanteda ('quanteda_dfm') or tm ('tm_dtm') class for DTM

m = get_dtm(tc, 'feature', form = 'quanteda_dfm')
class(m)
m

create DTM with sentences as rows (instead of documents)
m = get_dtm(tc, 'feature', context_level = 'sentence')
nrow(m)

use weighting
m = get_dtm(tc, 'feature', weight = 'norm_tfidf')

get_global_i Compute global feature positions

Description

Features are given global ids, with an added distance (max_window_size) between contexts (e.g.,
documents, sentences). This way, the distance of features can be calculated across multiple contexts
using a single vector

Usage

get_global_i(
tc,
context_level = c("document", "sentence"),
max_window_size = 200

)

Arguments

tc tCorpus object

context_level either ’document’ or ’sentence’
max_window_size

Determines the size of the gap between documents. Called max_window_size
because this gap determines what the maximum window size is for non-overlapping
windows between documents

Value

a tCorpus object

36 get_kwic

get_kwic Get keyword-in-context (KWIC) strings

Description

Create a data.frame with keyword-in-context strings for given indices (i), search results (hits) or
search strings (keyword).

Usage

get_kwic(
tc,
hits = NULL,
i = NULL,
query = NULL,
code = "",
ntokens = 10,
n = NA,
nsample = NA,
output_feature = "token",
query_feature = "token",
context_level = c("document", "sentence"),
kw_tag = c("<", ">"),
...

)

Arguments

tc a tCorpus

hits results of feature search. see search_features.

i instead of the hits argument, you can give the indices of features directly.

query instead of using the hits or i arguments, a search string can be given directly.
Note that this simply a convenient shorthand for first creating a hits object with
search_features. If a query is given, then the ... argument is used to pass other
arguments to search_features.

code if ’i’ or ’query’ is used, the code argument can be used to add a code label.
Should be a vector of the same length that gives the code for each i or query, or
a vector of length 1 for a single label.

ntokens an integers specifying the size of the context, i.e. the number of tokens left and
right of the keyword.

n a number, specifying the total number of hits

nsample like n, but with a random sample of hits. If multiple codes are used, the sample
is drawn for each code individually.

output_feature the feature column that is used to make the KWIC.

get_stopwords 37

query_feature If query is used, the feature column that is used to perform the query

context_level Select the maxium context (document or sentence).

kw_tag a character vector of length 2, that gives the symbols before (first value) and
after (second value) the keyword in the KWIC string. Can for instance be used
to prepare KWIC with format tags for highlighting.

... See search_features for the query parameters

Details

This is mainly for viewing results in the R console. If you want to create a subset corpus based
on the context of query results, you can use subset_query with the window argument. Also, the
browse_hits function is a good alternative for viewing query hits in full text.

Examples

tc = tokens_to_tcorpus(corenlp_tokens, sentence_col = 'sentence', token_id_col = 'id')

look directly for a term (or complex query)
get_kwic(tc, query = 'love*')

or, first perform a feature search, and then get the KWIC for the results
hits = search_features(tc, '(john OR mark) AND mary AND love*', context_level = 'sentence')
get_kwic(tc, hits=hits, context_level = 'sentence')

get_stopwords Get a character vector of stopwords

Description

Get a character vector of stopwords

Usage

get_stopwords(lang)

Arguments

lang The language. Current options are: "danish", "dutch", "english", "finnish",
"french", "german", "hungarian", "italian", "norwegian", "portuguese", "roma-
nian", "russian", "spanish" and "swedish"

Value

A character vector containing stopwords

38 melt_quanteda_dict

Examples

en_stop = get_stopwords('english')
nl_stop = get_stopwords('dutch')
ge_stop = get_stopwords('german')

head(en_stop)
head(nl_stop)
head(ge_stop)

laplace Laplace (i.e. add constant) smoothing

Description

Laplace (i.e. add constant) smoothing

Usage

laplace(freq, add = 0.5)

Arguments

freq A numeric vector of term frequencies (integers).

add The added value

Value

A numeric vector with the smoothed term proportions

Examples

laplace(c(0,0,1,1,1,2,2,2,3,3,4,7,10))

melt_quanteda_dict Convert a quanteda dictionary to a long data.table format

Description

This is used internally in the tCorpus dictionary search functions, but can be used manually for
more control. For example, adding numeric scores for sentiment dictionaries, and specifying which
label/code to use in search_dictionary().

Usage

melt_quanteda_dict(dict, column = "code", .index = NULL)

merge_tcorpora 39

Arguments

dict The quanteda dictionary

column The name of the column with the label/code. If dictionary contains multiple
levels, additional columns are added with the suffix _l[i], where [i] is the level.

.index Do not use (used for recursive melting)

Value

A data.table

Examples

d = quanteda::data_dictionary_LSD2015
melt_quanteda_dict(d)

merge_tcorpora Merge tCorpus objects

Description

Create one tcorpus based on multiple tcorpus objects

Usage

merge_tcorpora(
...,
keep_data = c("intersect", "all"),
keep_meta = c("intersect", "all"),
if_duplicate = c("stop", "rename", "drop"),
duplicate_tag = "#D"

)

Arguments

... tCorpus objects, or a list with tcorpus objects

keep_data if ’intersect’, then only the token data columns that occur in all tCorpurs objects
are kept

keep_meta if ’intersect’, then only the document meta columns that occur in all tCorpurs
objects are kept

if_duplicate determine behaviour if there are duplicate doc_ids across tcorpora. By default,
this yields an error, but you can set it to "rename" to change the names of dupli-
cates (which makes sense of only the doc_ids are duplicate, but not the actual
content), or "drop" to ignore duplicates, keeping only the first unique occurence.

duplicate_tag a character string. if if_duplicates is "rename", this tag is added to the document
id. (this is repeated till no duplicates remain)

40 plot.contextHits

Value

a tCorpus object

Examples

tc1 = create_tcorpus(sotu_texts[1:10,], doc_column = 'id')
tc2 = create_tcorpus(sotu_texts[11:20,], doc_column = 'id')
tc = merge_tcorpora(tc1, tc2)
tc$n_meta

duplicate handling
tc1 = create_tcorpus(sotu_texts[1:10,], doc_column = 'id')
tc2 = create_tcorpus(sotu_texts[6:15,], doc_column = 'id')

with "rename", has 20 documents of which 5 duplicates
tc = merge_tcorpora(tc1,tc2, if_duplicate = 'rename')
tc$n_meta
sum(grepl('#D', tc$meta$doc_id))

with "drop", has 15 documents without duplicates
tc = merge_tcorpora(tc1,tc2, if_duplicate = 'drop')
tc$n_meta
mean(grepl('#D', tc$meta$doc_id))

plot.contextHits S3 plot for contextHits class

Description

S3 plot for contextHits class

Usage

S3 method for class 'contextHits'
plot(x, min_weight = 0, backbone_alpha = NA, ...)

Arguments

x a contextHits object, as returned by search_contexts

min_weight Optionally, the minimum weight for an edge in the network

backbone_alpha Optionally, the alpha threshold for backbone extraction (similar to a p-value,
and lower is more strict)

... not used

plot.featureAssociations 41

Examples

Not run:
tc = create_tcorpus(sotu_texts, doc_column='id')
hits = search_contexts(tc, c('War# war* OR army OR bomb*','Terrorism# terroris*',

'Economy# econom* OR bank*','Education# educat* OR school*'))

plot(hits)

End(Not run)

plot.featureAssociations

visualize feature associations

Description

visualize feature associations

Usage

S3 method for class 'featureAssociations'
plot(x, n = 25, size = c("chi2", "freq", "ratio"), ...)

Arguments

x a featureAssociations object, created with the feature_associations function

n the number of words in the plot

size use "freq", "chi2" or "ratio" for determining the size of words

... additional arguments passed to dtm_wordcloud

Examples

as example, compare SOTU paragraphs about taxes to rest
tc = create_tcorpus(sotu_texts[1:100,], doc_column = 'id')
comp = compare_subset(tc, 'token', query_x = 'tax*')

plot(comp, balance=TRUE)
plot(comp, mode = 'ratio_x')
plot(comp, mode = 'ratio_y')

42 plot.vocabularyComparison

plot.featureHits S3 plot for featureHits class

Description

S3 plot for featureHits class

Usage

S3 method for class 'featureHits'
plot(x, min_weight = 0, backbone_alpha = NA, ...)

Arguments

x a featureHits object, as returned by search_features
min_weight Optionally, the minimum weight for an edge in the network
backbone_alpha Optionally, the alpha threshold for backbone extraction (similar to a p-value,

and lower is more strict)
... not used

Examples

tc = create_tcorpus(sotu_texts, doc_column='id')
hits = search_features(tc, c('War# war* OR army OR bomb*','Terrorism# terroris*',

'Economy# econom* OR bank*','Education# educat* OR school*'))
plot(hits)

plot.vocabularyComparison

visualize vocabularyComparison

Description

visualize vocabularyComparison

Usage

S3 method for class 'vocabularyComparison'
plot(
x,
n = 25,
mode = c("both", "ratio_x", "ratio_y"),
balance = T,
size = c("chi2", "freq", "ratio"),
...

)

plot_semnet 43

Arguments

x a vocabularyComparison object, created with the compare_corpus or compare_subset
method

n the number of words in the plot

mode use "both" to plot both overrepresented and underrepresented words using the
plot_words function. Whether a term is under- or overrepresented is indicated
on the x-axis, which shows the log ratios (negative is underrepresented, positive
is overrepresented). Use "ratio_x" or "ratio_y" to only plot overrepresented or
underrepresented words using dtm_wordcloud

balance if TRUE, get an equal amount of terms on the left (underrepresented) and right
(overrepresented) side. If FALSE, the top chi words are used, regardless of ratio.

size use "freq", "chi2" or "ratio" for determining the size of words

... additional arguments passed to plot_words ("both" mode) or dtm_wordcloud
(ratio modes)

Examples

as example, compare SOTU paragraphs about taxes to rest
tc = create_tcorpus(sotu_texts[1:100,], doc_column = 'id')
comp = compare_subset(tc, 'token', query_x = 'tax*')

plot(comp, balance=TRUE)
plot(comp, mode = 'ratio_x')
plot(comp, mode = 'ratio_y')

plot_semnet Visualize a semnet network

Description

plot_semnet is a wrapper for the plot.igraph() function optimized for plotting a semantic network
of the "semnet" class.

Usage

plot_semnet(
g,
weight_attr = "weight",
min_weight = NA,
delete_isolates = F,
vertexsize_attr = "freq",
vertexsize_coef = 1,
vertexcolor_attr = NA,
edgewidth_coef = 1,

44 plot_semnet

max_backbone_alpha = NA,
labelsize_coef = 1,
labelspace_coef = 1.1,
reduce_labeloverlap = F,
redo_layout = F,
return_graph = T,
vertex.label.dist = 0.25,
layout_fun = igraph::layout_with_fr,
...

)

Arguments

g A network in the igraph format. Specifically designed for the output of coOc-
curenceNetwork() and windowedCoOccurenceNetwork()

weight_attr The name of the weight attribute. Default is ’weight’

min_weight The minimum weight. All edges with a lower weight are dropped
delete_isolates

If TRUE, isolate vertices (also after applying min_weight) are dropped
vertexsize_attr

a character string indicating a vertex attribute that represents size. Default is
’freq’, which is created in the coOccurenceNetwork functions to indicate the
number of times a token occured.

vertexsize_coef

a coefficient for changing the vertex size.
vertexcolor_attr

a character string indicating a vertex attribute that represents color. The attribute
can also be a numeric value (e.g., a cluster membership) in which case colors
are assigned to numbers. If no (valid) color attribute is given, vertex color are
based on undirected fastgreedy.community() clustering.

edgewidth_coef a coefficient for changing the edge width
max_backbone_alpha

If g has an edge attribute named alpha (added if backbone extraction is used),
this specifies the maximum alpha value.

labelsize_coef a coefficient for increasing or decreasing the size of the vertexlabel.
labelspace_coef

a coefficient that roughly determines the minimal distance between vertex labels,
based on the size of labels. Only used if reduce_labeloverlap is TRUE.

reduce_labeloverlap

if TRUE, an algorithm is used to reduce overlap as best as possible.

redo_layout If TRUE, a new layout will be calculated using layout_with_fr(). If g does not
have a layout attribute (g$layout), a new layout is automatically calculated.

return_graph if TRUE, plot_semnet() also returns the graph object with the attributes and
layout as shown in the plot.

vertex.label.dist

The distance of the label to the center of the vertex

plot_words 45

layout_fun The igraph layout function that is used.

... additional arguments are passed on to plot.igraph()

Details

Before plotting the network, the set_network_attributes() function is used to set pretty defaults for
plotting. Optionally, reduce_labeloverlap can be used to prevent labeloverlap (as much as possible).

Value

Plots a network, and returns the network object if return_graph is TRUE.

Examples

tc = create_tcorpus(sotu_texts, doc_column = 'id')
tc$preprocess('token','feature', remove_stopwords = TRUE, use_stemming = TRUE, min_docfreq=10)

g = semnet_window(tc, 'feature', window.size = 10)
g = backbone_filter(g, max_vertices = 100)
plot_semnet(g)

plot_words Plot a wordcloud with words ordered and coloured according to a
dimension (x)

Description

Plot a wordcloud with words ordered and coloured according to a dimension (x)

Usage

plot_words(
x,
y = NULL,
words,
wordfreq = rep(1, length(x)),
xlab = "",
ylab = "",
yaxt = "n",
scale = 1,
random.y = T,
xlim = NULL,
ylim = NULL,
col = c("darkred", "navyblue"),
fixed_col = NULL,
...

)

46 preprocess_tokens

Arguments

x The (approximate) x positions of the words

y The (approximate) y positions of the words

words A character vector with the words to plot

wordfreq The frequency of the words, defaulting to 1

xlab Label of the x axis

ylab Label of the y axis

yaxt see par documentation

scale Maximum size to scale the wordsize

random.y if TRUE, the y position of words is random, otherwise it represents the word
frequency.

xlim Starting value of x axis

ylim Starting value of y axis

col A vector of colors that is passed to colorRamp to interpolate colors over x axis

fixed_col Optionally, a vector of the exact colors given to words.

... additional parameters passed to the plot function

Value

nothing

Examples

x = c(-10, -5, 3, 5)
y = c(0, 2, 5, 10)
words = c('words', 'where', 'you', 'like')

plot_words(x,y,words, c(1,2,3,4))

preprocess_tokens Preprocess tokens in a character vector

Description

Preprocess tokens in a character vector

preprocess_tokens 47

Usage

preprocess_tokens(
x,
context = NULL,
language = "english",
use_stemming = F,
lowercase = T,
ngrams = 1,
replace_whitespace = F,
as_ascii = F,
remove_punctuation = T,
remove_stopwords = F,
remove_numbers = F,
min_freq = NULL,
min_docfreq = NULL,
max_freq = NULL,
max_docfreq = NULL,
min_char = NULL,
max_char = NULL,
ngram_skip_empty = T

)

Arguments

x A character or factor vector in which each element is a token (i.e. a tokenized
text)

context Optionally, a character vector of the same length as x, specifying the context of
token (e.g., document, sentence). Has to be given if ngram > 1

language The language used for stemming and removing stopwords

use_stemming Logical, use stemming. (Make sure the specify the right language!)

lowercase Logical, make token lowercase

ngrams A number, specifying the number of tokens per ngram. Default is unigrams (1).
replace_whitespace

Logical. If TRUE, all whitespace is replaced by underscores

as_ascii Logical. If TRUE, tokens will be forced to ascii
remove_punctuation

Logical. if TRUE, punctuation is removed
remove_stopwords

Logical. If TRUE, stopwords are removed (Make sure to specify the right lan-
guage!)

remove_numbers remove features that are only numbers

min_freq an integer, specifying minimum token frequency.

min_docfreq an integer, specifying minimum document frequency.

max_freq an integer, specifying minimum token frequency.

48 print.contextHits

max_docfreq an integer, specifying minimum document frequency.

min_char an integer, specifying minimum number of characters in a term

max_char an integer, specifying maximum number of characters in a term
ngram_skip_empty

if ngrams are used, determines whether empty (filtered out) terms are skipped
(i.e. c("this", NA, "test"), becomes "this_test") or

Value

a factor vector

Examples

tokens = c('I', 'am', 'a', 'SHORT', 'example', 'sentence', '!')

default is lowercase without punctuation
preprocess_tokens(tokens)

optionally, delete stopwords, perform stemming, and make ngrams
preprocess_tokens(tokens, remove_stopwords = TRUE, use_stemming = TRUE)
preprocess_tokens(tokens, context = NA, ngrams = 3)

print.contextHits S3 print for contextHits class

Description

S3 print for contextHits class

Usage

S3 method for class 'contextHits'
print(x, ...)

Arguments

x a contextHits object, as returned by search_contexts

... not used

Examples

text = c('A B C', 'D E F. G H I', 'A D', 'GGG')
tc = create_tcorpus(text, doc_id = c('a','b','c','d'), split_sentences = TRUE)
hits = search_contexts(tc, c('query label# A AND B', 'second query# (A AND Q) OR ("D E") OR I'))

hits

print.featureHits 49

print.featureHits S3 print for featureHits class

Description

S3 print for featureHits class

Usage

S3 method for class 'featureHits'
print(x, ...)

Arguments

x a featureHits object, as returned by search_features

... not used

Examples

text = c('A B C', 'D E F. G H I', 'A D', 'GGG')
tc = create_tcorpus(text, doc_id = c('a','b','c','d'), split_sentences = TRUE)
hits = search_features(tc, c('query label# A AND B', 'second query# (A AND Q) OR ("D E") OR I'))

hits

print.tCorpus S3 print for tCorpus class

Description

S3 print for tCorpus class

Usage

S3 method for class 'tCorpus'
print(x, ...)

Arguments

x a tCorpus object

... not used

Examples

tc = create_tcorpus(c('First text', 'Second text'))
print(tc)

50 require_package

refresh_tcorpus Refresh a tCorpus object using the current version of corpustools

Description

As an R6 class, tCorpus contains its methods within the class object (i.e. itself). Therefore, if you
use a new version of corpustools with an older tCorpus object (e.g., stored as a .rds. file), then
the methods are not automatically updated. You can then use refresh_tcorpus() to reinitialize the
tCorpus object with the current version of corpustools.

Usage

refresh_tcorpus(tc)

Arguments

tc a tCorpus object

Value

a tCorpus object

Examples

tc = create_tcorpus(c('First text', 'Second text'))
refresh_tcorpus(tc)

require_package Check if package with given version exists

Description

Check if package with given version exists

Usage

require_package(package, min_version = NULL)

Arguments

package The name of the package

min_version The minimum version

Value

An error if package does not exist

search_contexts 51

search_contexts Search for documents or sentences using Boolean queries

Description

Search for documents or sentences using Boolean queries

Usage

search_contexts(
tc,
query,
code = NULL,
feature = "token",
context_level = c("document", "sentence"),
not = F,
verbose = F,
as_ascii = F

)

Arguments

tc a tCorpus

query A character string that is a query. See details for available query operators and
modifiers. Can be multiple queries (as a vector), in which case it is recom-
mended to also specifiy the code argument, to label results.

code If given, used as a label for the results of the query. Especially usefull if multiple
queries are used.

feature The name of the feature column

context_level Select whether the queries should occur within while "documents" or specific
"sentences". Returns results at the specified level.

not If TRUE, perform a NOT search. Return the articles/sentences for which the
query is not found.

verbose If TRUE, progress messages will be printed

as_ascii if TRUE, perform search in ascii.

Details

Brief summary of the query language

The following operators and modifiers are supported:

• The standaard Boolean operators: AND, OR and NOT. As a shorthand, an empty space can
be used as an OR statement, so that "this that those" means "this OR that OR those". NOT
statements stricly mean AND NOT, so should only be used between terms. If you want to find
everything except certain terms, you can use * (wildcard for anything) like this: "* NOT (this
that those)".

52 search_contexts

• For complex queries parentheses can (and should) be used. e.g. ’(spam AND eggs) NOT (fish
and (chips OR albatros))

• Wildcards ? and *. The questionmark can be used to match 1 unknown character or no
character at all, e.g. "?at" would find "cat", "hat" and "at". The asterisk can be used to match
any number of unknown characters. Both the asterisk and questionmark can be used at the
start, end and within a term.

• Multitoken strings, or exact strings, can be specified using quotes. e.g. "united states"

• tokens within a given token distance can be found using quotes plus tilde and a number speci-
fiying the token distance. e.g. "climate chang*"~10

• Alternatively, angle brackets (<>) can be used instead of quotes, which also enables nesting
exact strings in proximity/window search

• Queries are not case sensitive, but can be made so by adding the ~s flag. e.g. COP~s only
finds "COP" in uppercase. The ~s flag can also be used on quotes to make all terms within
quotes case sensitive, and this can be combined with the token proximity flag. e.g. "Marco
Polo"~s10

Value

A contextHits object, which is a list with $hits (data.frame with locations) and $queries (copy of
queries for provenance)

Examples

text = c('A B C', 'D E F. G H I', 'A D', 'GGG')
tc = create_tcorpus(text, doc_id = c('a','b','c','d'), split_sentences = TRUE)
tc$tokens

hits = search_contexts(tc, c('query label# A AND B', 'second query# (A AND Q) OR ("D E") OR I'))
hits ## print shows number of hits
hits$hits ## hits is a list, with hits$hits being a data.frame with specific contexts
summary(hits) ## summary gives hits per query

sentence level
hits = search_contexts(tc, c('query label# A AND B', 'second query# (A AND Q) OR ("D E") OR I'),

context_level = 'sentence')
hits$hits ## hits is a list, with hits$hits being a data.frame with specific contexts

query language examples

single term
search_contexts(tc, 'A')$hits

search_contexts(tc, 'G*')$hits ## wildcard *
search_contexts(tc, '*G')$hits ## wildcard *
search_contexts(tc, 'G*G')$hits ## wildcard *

search_contexts(tc, 'G?G')$hits ## wildcard ?
search_contexts(tc, 'G?')$hits ## wildcard ? (no hits)

search_dictionary 53

boolean
search_contexts(tc, 'A AND B')$hits
search_contexts(tc, 'A AND D')$hits
search_contexts(tc, 'A AND (B OR D)')$hits

search_contexts(tc, 'A NOT B')$hits
search_contexts(tc, 'A NOT (B OR D)')$hits

sequence search (adjacent words)
search_contexts(tc, '"A B"')$hits
search_contexts(tc, '"A C"')$hits ## no hit, because not adjacent

search_contexts(tc, '"A (B OR D)"')$hits ## can contain nested OR
cannot contain nested AND or NOT!!

search_contexts(tc, '<A B>')$hits ## can also use <> instead of "".

proximity search (using ~ flag)
search_contexts(tc, '"A C"~5')$hits ## A AND C within a 5 word window
search_contexts(tc, '"A C"~1')$hits ## no hit, because A and C more than 1 word apart

search_contexts(tc, '"A (B OR D)"~5')$hits ## can contain nested OR
search_contexts(tc, '"A <B C>"~5')$hits ## can contain nested sequence (must use <>)
search_contexts(tc, '<A <B C>>~5')$hits ## (<> is always OK, but cannot nest quotes in quotes)
cannot contain nested AND or NOT!!

case sensitive search
search_contexts(tc, 'g')$hits ## normally case insensitive
search_contexts(tc, 'g~s')$hits ## use ~s flag to make term case sensitive

search_contexts(tc, '(a OR g)~s')$hits ## use ~s flag on everything between parentheses
search_contexts(tc, '(a OR G)~s')$hits ## use ~s flag on everything between parentheses

search_contexts(tc, '"a b"~s')$hits ## use ~s flag on everything between quotes
search_contexts(tc, '"A B"~s')$hits ## use ~s flag on everything between quotes

search_dictionary Dictionary lookup

Description

Similar to search_features, but for fast matching of large dictionaries.

54 search_dictionary

Usage

search_dictionary(
tc,
dict,
token_col = "token",
string_col = "string",
code_col = "code",
sep = " ",
mode = c("unique_hits", "features"),
case_sensitive = F,
use_wildcards = T,
ascii = F,
verbose = F

)

Arguments

tc A tCorpus

dict A dictionary. Can be either a data.frame or a quanteda dictionary. If a data.frame
is given, it has to have a column named "string" (or use string_col argument) that
contains the dictionary terms, and a column "code" (or use code_col argument)
that contains the label/code represented by this string. Each row has a single
string, that can be a single word or a sequence of words seperated by a whites-
pace (e.g., "not bad"), and can have the common ? and * wildcards. If a quanteda
dictionary is given, it is automatically converted to this type of data.frame with
the melt_quanteda_dict function. This can be done manually for more control
over labels.

token_col The feature in tc that contains the token text.

string_col If dict is a data.frame, the name of the column in dict with the dictionary lookup
string. Default is "string"

code_col The name of the column in dict with the dictionary code/label. Default is "code".
If dict is a quanteda dictionary with multiple levels, "code_l2", "code_l3", etc.
can be used to select levels..

sep A regular expression for separating multi-word lookup strings (default is " ",
which is what quanteda dictionaries use). For example, if the dictionary con-
tains "Barack Obama", sep should be " " so that it matches the consequtive
tokens "Barack" and "Obama". In some dictionaries, however, it might say
"Barack+Obama", so in that case sep = ’\\+’ should be used.

mode There are two modes: "unique_hits" and "features". The "unique_hits" mode
prioritizes finding unique matches, which is recommended for counting how of-
ten a dictionary term occurs. If a term matches multiple dictionary terms (which
should only happen for nested multi-word terms, such as "bad" and "not bad"),
the longest term is always used. The features mode does not delete duplicates.

case_sensitive logical, should lookup be case sensitive?

use_wildcards Use the wildcards * (any number including none of any character) and ? (one or
none of any character). If FALSE, exact string matching is used

search_features 55

ascii If true, convert text to ascii before matching

verbose If true, report progress

Value

A vector with the id value (taken from dict$id) for each row in tc$tokens

Examples

dict = data.frame(string = c('this is', 'for a', 'not big enough'), code=c('a','c','b'))
tc = create_tcorpus(c('this is a test','This town is not big enough for a test'))
search_dictionary(tc, dict)$hits

search_features Find tokens using a Lucene-like search query

Description

Search tokens in a tokenlist using Lucene-like queries. For a detailed explanation of the query
language, see the details below.

Usage

search_features(
tc,
query,
code = NULL,
feature = "token",
mode = c("unique_hits", "features"),
context_level = c("document", "sentence"),
keep_longest = TRUE,
as_ascii = F,
verbose = F

)

Arguments

tc a tCorpus

query A character string that is a query. See details for available query operators and
modifiers. Can be multiple queries (as a vector), in which case it is recom-
mended to also specifiy the code argument, to label results.

code The code given to the tokens that match the query (usefull when looking for
multiple queries). Can also put code label in query with # (see details)

feature The name of the feature column within which to search.

56 search_features

mode There are two modes: "unique_hits" and "features". The "unique_hits" mode
prioritizes finding full and unique matches., which is recommended for counting
how often a query occurs. However, this also means that some tokens for which
the query is satisfied might not assigned a hit_id. The "features" mode, instead,
prioritizes finding all tokens, which is recommended for coding coding features
(the code_features and search_recode methods always use features mode).

context_level Select whether the queries should occur within while "documents" or specific
"sentences".

keep_longest If TRUE, then overlapping in case of overlapping queries strings in unique_hits
mode, the query with the most separate terms is kept. For example, in the text
"mr. Bob Smith", the query [smith OR "bob smith"] would match "Bob" and
"Smith". If keep_longest is FALSE, the match that is used is determined by the
order in the query itself. The same query would then match only "Smith".

as_ascii if TRUE, perform search in ascii.

verbose If TRUE, progress messages will be printed

Details

Brief summary of the query language

The following operators and modifiers are supported:

• The standaard Boolean operators: AND, OR and NOT. As a shorthand, an empty space can
be used as an OR statement, so that "this that those" means "this OR that OR those". NOT
statements stricly mean AND NOT, so should only be used between terms. If you want to find
everything except certain terms, you can use * (wildcard for anything) like this: "* NOT (this
that those)".

• For complex queries parentheses can (and should) be used. e.g. ’(spam AND eggs) NOT (fish
and (chips OR albatros))

• Wildcards ? and *. The questionmark can be used to match 1 unknown character or no
character at all, e.g. "?at" would find "cat", "hat" and "at". The asterisk can be used to match
any number of unknown characters. Both the asterisk and questionmark can be used at the
start, end and within a term.

• Multitoken strings, or exact strings, can be specified using quotes. e.g. "united states"

• tokens within a given token distance can be found using quotes plus tilde and a number speci-
fiying the token distance. e.g. "climate chang*"~10

• Alternatively, angle brackets (<>) can be used instead of quotes, which also enables nesting
exact strings in proximity/window search

• Queries are not case sensitive, but can be made so by adding the ~s flag. e.g. COP~s only finds
"COP" in uppercase. The ~s flag can also be used on parentheses or quotes to make all terms
within case sensitive, and this can be combined with the token proximity flag. e.g. "Marco
Polo"~s10

• The ~g (ghost) flag can be used to mark a term (or all terms within parentheses/quotes) as a
ghost term. This has two effects. Firstly, features that match the query term will not be in the
results. This is usefull if a certain term is important for getting reliable search results, but not
conceptually relevant. Secondly, ghost terms can be used multiple times, in different query

search_features 57

hits (only relevant in unique_hits mode). For example, in the text "A B C", the query ’A~g
AND (B C)’ will return both B and C as separate hit, whereas ’A AND (B C)’ will return A
and B as a single hit.

• A code label can be included at the beginning of a query, followed by a # to start the query
(label# query). Note that to search for a hashtag symbol, you need to escape it with \ (double
\ in R character vector)

• Aside from the feature column (specified with the feature argument) a query can include any
column in the token data. To manually select a column, use ’columnname: ’ at the start of a
query or nested query (i.e. between parentheses or quotes). See examples for clarification.

Value

A featureHits object, which is a list with $hits (data.frame with locations) and $queries (copy of
queries for provenance)

Examples

text = c('A B C', 'D E F. G H I', 'A D', 'GGG')
tc = create_tcorpus(text, doc_id = c('a','b','c','d'), split_sentences = TRUE)
tc$tokens ## (example uses letters instead of words for simple query examples)

hits = search_features(tc, c('query label# A AND B', 'second query# (A AND Q) OR ("D E") OR I'))
hits ## print shows number of hits
hits$hits ## hits is a list, with hits$hits being a data.frame with specific features
summary(hits) ## summary gives hits per query

sentence level
hits = search_features(tc, c('query label# A AND B', 'second query# (A AND Q) OR ("D E") OR I'),

context_level = 'sentence')
hits$hits ## hits is a list, with hits$hits being a data.frame with specific features

query language examples

single term
search_features(tc, 'A')$hits

search_features(tc, 'G*')$hits ## wildcard *
search_features(tc, '*G')$hits ## wildcard *
search_features(tc, 'G*G')$hits ## wildcard *

search_features(tc, 'G?G')$hits ## wildcard ?
search_features(tc, 'G?')$hits ## wildcard ? (no hits)

boolean
search_features(tc, 'A AND B')$hits
search_features(tc, 'A AND D')$hits
search_features(tc, 'A AND (B OR D)')$hits

58 search_features

search_features(tc, 'A NOT B')$hits
search_features(tc, 'A NOT (B OR D)')$hits

sequence search (adjacent words)
search_features(tc, '"A B"')$hits
search_features(tc, '"A C"')$hits ## no hit, because not adjacent

search_features(tc, '"A (B OR D)"')$hits ## can contain nested OR
cannot contain nested AND or NOT!!

search_features(tc, '<A B>')$hits ## can also use <> instead of "".

proximity search (using ~ flag)
search_features(tc, '"A C"~5')$hits ## A AND C within a 5 word window
search_features(tc, '"A C"~1')$hits ## no hit, because A and C more than 1 word apart

search_features(tc, '"A (B OR D)"~5')$hits ## can contain nested OR
search_features(tc, '"A <B C>"~5')$hits ## can contain nested sequence (must use <>)
search_features(tc, '<A <B C>>~5')$hits ## <> is always OK, but cannot nest "" in ""
cannot contain nested AND or NOT!!

case sensitive search (~s flag)
search_features(tc, 'g')$hits ## normally case insensitive
search_features(tc, 'g~s')$hits ## use ~s flag to make term case sensitive

search_features(tc, '(a OR g)~s')$hits ## use ~s flag on everything between parentheses
search_features(tc, '(a OR G)~s')$hits

search_features(tc, '"a b"~s')$hits ## use ~s flag on everything between quotes
search_features(tc, '"A B"~s')$hits ## use ~s flag on everything between quotes

ghost terms (~g flag)
search_features(tc, 'A AND B~g')$hits ## ghost term (~g) has to occur, but is not returned
search_features(tc, 'A AND Q~g')$hits ## no hi

(can also be used on parentheses/quotes/anglebrackets for all nested terms)

"unique_hits" versus "features" mode
tc = create_tcorpus('A A B')

search_features(tc, 'A AND B')$hits ## in "unique_hits" (default), only match full queries
(B is not repeated to find a second match of A AND B)

search_features(tc, 'A AND B', mode = 'features')$hits ## in "features", match any match
(note that hit_id in features mode is irrelevant)

ghost terms (used for conditions) can be repeated
search_features(tc, 'A AND B~g')$hits

semnet 59

semnet Create a semantic network based on the co-occurence of tokens in
documents

Description

This function calculates the co-occurence of features and returns a network/graph in the igraph for-
mat, where nodes are tokens and edges represent the similarity/adjacency of tokens. Co-occurence
is calcuated based on how often two tokens occured within the same document (e.g., news arti-
cle, chapter, paragraph, sentence). The semnet_window() function can be used to calculate co-
occurrence of tokens within a given token distance.

Usage

semnet(
tc,
feature = "token",
measure = c("con_prob", "con_prob_weighted", "cosine", "count_directed",
"count_undirected", "chi2"),

context_level = c("document", "sentence"),
backbone = F,
n.batches = NA

)

Arguments

tc a tCorpus or a featureHits object (i.e. the result of search_features)

feature The name of the feature column

measure The similarity measure. Currently supports: "con_prob" (conditional probabil-
ity), "con_prob_weighted", "cosine" similarity, "count_directed" (i.e number of
cooccurrences) and "count_undirected" (same as count_directed, but returned as
an undirected network, chi2 (chi-square score))

context_level Determine whether features need to co-occurr within "documents" or "sentences"

backbone If True, add an edge attribute for the backbone alpha

n.batches If a number, perform the calculation in batches

Value

an Igraph graph in which nodes are features and edges are similarity scores

Examples

text = c('A B C', 'D E F. G H I', 'A D', 'GGG')
tc = create_tcorpus(text, doc_id = c('a','b','c','d'), split_sentences = TRUE)

g = semnet(tc, 'token')

60 semnet_window

g
igraph::get.data.frame(g)
plot_semnet(g)

semnet_window Create a semantic network based on the co-occurence of tokens in
token windows

Description

This function calculates the co-occurence of features and returns a network/graph in the igraph for-
mat, where nodes are tokens and edges represent the similarity/adjacency of tokens. Co-occurence
is calcuated based on how often two tokens co-occurr within a given token distance.

If a featureHits object is given as input, then for for query hits that have multiple positions (i.e.
terms connected with AND statements or word proximity) the raw count score is biased. For the
count_* measures therefore only the first position of the query hit is used.

Usage

semnet_window(
tc,
feature = "token",
measure = c("con_prob", "cosine", "count_directed", "count_undirected", "chi2"),
context_level = c("document", "sentence"),
window.size = 10,
direction = "<>",
backbone = F,
n.batches = 5,
matrix_mode = c("positionXwindow", "windowXwindow")

)

Arguments

tc a tCorpus or a featureHits object (i.e. the result of search_features)

feature The name of the feature column

measure The similarity measure. Currently supports: "con_prob" (conditional proba-
bility), "cosine" similarity, "count_directed" (i.e number of cooccurrences) and
"count_undirected" (same as count_directed, but returned as an undirected net-
work, chi2 (chi-square score))

context_level Determine whether features need to co-occurr within "documents" or "sentences"

window.size The token distance within which features are considered to co-occurr

direction Determine whether co-occurrence is assymmetricsl ("<>") or takes the order of
tokens into account. If direction is ’<’, then the from/x feature needs to occur
before the to/y feature. If direction is ’>’, then after.

backbone If True, add an edge attribute for the backbone alpha

set_network_attributes 61

n.batches To limit memory use the calculation is divided into batches. This parameter
controls the number of batches.

matrix_mode There are two approaches for calculating window co-occurrence (see details).
By default we use positionXmatrix, but matrixXmatrix is optional because it
might be favourable for some uses, and might make more sense for cosine sim-
ilarity.

Details

There are two approaches for calculating window co-occurrence. One is to measure how often a
feature occurs within a given token window, which can be calculating by calculating the inner prod-
uct of a matrix that contains the exact position of features and a matrix that contains the occurrence
window. We refer to this as the "positionXwindow" mode. Alternatively, we can measure how
much the windows of features overlap, for which take the inner product of two window matrices,
which we call the "windowXwindow" mode. The positionXwindow approach has the advantage
of being easy to interpret (e.g. how likely is feature "Y" to occurr within 10 tokens from feature
"X"?). The windowXwindow mode, on the other hand, has the interesting feature that similarity is
stronger if tokens co-occurr more closely together (since then their windows overlap more), but this
only works well for similarity measures that normalize the similarity (e.g., cosine). Currently, we
only use the positionXwindow mode, but windowXwindow could be interesting to use as well, and
for cosine it might actually make more sense.

Value

an Igraph graph in which nodes are features and edges are similarity scores

Examples

text = c('A B C', 'D E F. G H I', 'A D', 'GGG')
tc = create_tcorpus(text, doc_id = c('a','b','c','d'), split_sentences = TRUE)

g = semnet_window(tc, 'token', window.size = 1)
g
igraph::get.data.frame(g)
plot_semnet(g)

set_network_attributes

Set some default network attributes for pretty plotting

Description

The purpose of this function is to create some default network attribute options to plot networks in
a nice and insightfull way.

62 sgt

Usage

set_network_attributes(
g,
size_attribute = "freq",
color_attribute = NA,
redo_layout = F,
edgewidth_coef = 1,
layout_fun = igraph::layout_with_fr

)

Arguments

g A graph in the Igraph format.

size_attribute the name of the vertex attribute to be used to set the size of nodes
color_attribute

the name of the attribute that is used to select the color

redo_layout if TRUE, force new layout if layout already exists as a graph attribute

edgewidth_coef A coefficient for changing the edge width

layout_fun THe igraph layout function used

Value

a network in the Igraph format

Examples

tc = create_tcorpus(c('A B C', 'B C', 'B D'))
g = semnet(tc, 'token')

igraph::get.edge.attribute(g)
igraph::get.vertex.attribute(g)
plot(g)
g = set_network_attributes(g, size_attribute = 'freq')
igraph::get.edge.attribute(g)
igraph::get.vertex.attribute(g)
plot(g)

sgt Simple Good Turing smoothing

Description

Implementation of the Simple Good Turing smoothing proposed in: Gale, W. A., \& Sampson, G.
(1995). Good turing frequency estimation without tears. Journal of Quantitative Linguistics, 2(3),
217-237.

show_udpipe_models 63

Usage

sgt(freq)

Arguments

freq A numeric vector of frequencies (integers).

Value

A numeric vector with the smoothed term proportions

show_udpipe_models Show the names of udpipe models

Description

Returns a data.table with the language, treebank and udpipe_model name. Uses the default model
repository provided by the udpipe package (udpipe_download_model). For more information
about udpipe and performance benchmarks of the UD models, see the GitHub page of the udpipe
package.

Usage

show_udpipe_models()

Value

a data.frame

Examples

show_udpipe_models()

sotu_texts State of the Union addresses

Description

State of the Union addresses

Usage

data(sotu_texts)

Format

data.frame

https://github.com/bnosac/udpipe
https://github.com/bnosac/udpipe

64 subset.tCorpus

stopwords_list Basic stopword lists

Description

Basic stopword lists

Usage

data(stopwords_list)

Format

A named list, with names matching the languages used by SnowballC

subset.tCorpus S3 subset for tCorpus class

Description

S3 subset for tCorpus class

Usage

S3 method for class 'tCorpus'
subset(x, subset = NULL, subset_meta = NULL, window = NULL, ...)

Arguments

x a tCorpus object

subset logical expression indicating rows to keep in the tokens data.

subset_meta logical expression indicating rows to keep in the document meta data.

window If not NULL, an integer specifiying the window to be used to return the subset.
For instance, if the subset contains token 10 in a document and window is 5, the
subset will contain token 5 to 15. Naturally, this does not apply to subset_meta.

... not used

subset_query 65

Examples

create tcorpus of 5 bush and obama docs
tc = create_tcorpus(sotu_texts[c(1:5,801:805),], doc_col='id')

subset to keep only tokens where token_id <= 20 (i.e.first 20 tokens)
tcs1 = subset(tc, token_id < 20)
tcs1

subset to keep only documents where president is Barack Obama
tcs2 = subset(tc, subset_meta = president == 'Barack Obama')
tcs2

subset_query Subset tCorpus token data using a query

Description

A convenience function that searches for contexts (documents, sentences), and uses the results to
subset the tCorpus token data.

Usage

subset_query(
tc,
query,
feature = "token",
context_level = c("document", "sentence"),
not = F,
as_ascii = F,
window = NA

)

Arguments

tc A tCorpus

query A character string that is a query. See search_contexts for query syntax.

feature The name of the feature columns on which the query is used.

context_level Select whether the query and subset are performed at the document or sentence
level.

not If TRUE, perform a NOT search. Return the articles/sentences for which the
query is not found.

as_ascii if TRUE, perform search in ascii.

window If used, uses a word distance as the context (overrides context_level)

Details

See the documentation for search_contexts for an explanation of the query language.

66 summary.featureHits

Examples

text = c('A B C', 'D E F. G H I', 'A D', 'GGG')
tc = create_tcorpus(text, doc_id = c('a','b','c','d'), split_sentences = TRUE)

subset by reference
tc2 = subset_query(tc, 'A')
tc2$meta

summary.contextHits S3 summary for contextHits class

Description

S3 summary for contextHits class

Usage

S3 method for class 'contextHits'
summary(object, ...)

Arguments

object a contextHits object, as returned by search_contexts

... not used

Examples

text = c('A B C', 'D E F. G H I', 'A D', 'GGG')
tc = create_tcorpus(text, doc_id = c('a','b','c','d'), split_sentences = TRUE)
hits = search_contexts(tc, c('query label# A AND B', 'second query# (A AND Q) OR ("D E") OR I'))

summary(hits)

summary.featureHits S3 summary for featureHits class

Description

S3 summary for featureHits class

Usage

S3 method for class 'featureHits'
summary(object, ...)

summary.tCorpus 67

Arguments

object a featureHits object, as returned by search_features

... not used

Examples

text = c('A B C', 'D E F. G H I', 'A D', 'GGG')
tc = create_tcorpus(text, doc_id = c('a','b','c','d'), split_sentences = TRUE)
hits = search_features(tc, c('query label# A AND B', 'second query# (A AND Q) OR ("D E") OR I'))

summary(hits)

summary.tCorpus Summary of a tCorpus object

Description

Summary of a tCorpus object

Usage

S3 method for class 'tCorpus'
summary(object, ...)

Arguments

object A tCorpus object

... not used

Examples

tc = create_tcorpus(c('First text', 'Second text'))
summary(tc)

tCorpus tCorpus: a corpus class for tokenized texts

Description

The tCorpus is a class for managing tokenized texts, stored as a data.frame in which each row
represents a token, and columns contain the positions and features of these tokens.

68 tCorpus$annotate_rsyntax

Methods and Functions

The corpustools package uses both functions and methods for working with the tCorpus.

Methods are used for all operations that modify the tCorpus itself, such as subsetting or adding
columns. This allows the data to be modified by reference. Methods are accessed using the dollar
sign after the tCorpus object. For example, if the tCorpus is named tc, the subset method can be
called as tc$subset(...)

Functions are used for all operations that return a certain output, such as search results or a semantic
network. These are used in the common R style that you know and love. For example, if the tCorpus
is named tc, a semantic network can be created with semnet(tc, ...)

Overview of methods and functions

The primary goal of the tCorpus is to facilitate various corpus analysis techniques. The documen-
tation for currently implemented techniques can be reached through the following links.

Create a tCorpus Functions for creating a tCorpus object
Manage tCorpus data Methods for viewing, modifying and subsetting tCorpus data
Features Preprocessing, subsetting and analyzing features
Using search strings Use Boolean queries to analyze the tCorpus
Co-occurrence networks Feature co-occurrence based semantic network analysis
Corpus comparison Compare corpora
Topic modeling Create and visualize topic models
Document similarity Calculate document similarity

tCorpus$annotate_rsyntax

Annotate tokens based on rsyntax queries

Description

Apply queries to extract syntax patterns, and add the results as three columns to a tokenlist. The
first column contains the ids for each hit. The second column contains the annotation label. The
third column contains the fill level (which you probably won’t use, but is important for some fea-
tures). Only nodes that are given a name in the tquery (using the label parameter) will be added as
annotation.

Note that while queries only find 1 node for each labeled component of a pattern (e.g., quote queries
have 1 node for "source" and 1 node for "quote"), all children of these nodes can be annotated by
settting fill to TRUE. If a child has multiple ancestors, only the most direct ancestors are used (see
documentation for the fill argument).

Usage:
R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

annotate_rsyntax(column, ..., block = NULL, fill = TRUE,
overwrite = FALSE, block_fill = FALSE, copy = TRUE,
verbose = FALSE)

tCorpus$code_dictionary 69

Arguments

column The name of the column in which the annotations are added. The unique ids are
added as column_id

... One or multiple tqueries, or a list of queries, as created with tquery. Queries
can be given a named by using a named argument, which will be used in the
annotation_id to keep track of which query was used.

block Optionally, specify ids (doc_id - sentence - token_id triples) that are blocked
from querying and filling (ignoring the id and recursive searches through the
id).

fill Logical. If TRUE (default) also assign the fill nodes (as specified in the tquery).
Otherwise these are ignored

overwrite Applies if column already exists. If TRUE, existing column will be overwrit-
ten. If FALSE, the existing annotations in the column will be blocked, and new
annotations will be added. This is identical to using multiple queries.

block_fill If TRUE (and overwrite is FALSE), the existing fill nodes will also be blocked.
In other words, the new annotations will only be added if the

verbose If TRUE, report progress (only usefull if multiple queries are given)

Examples

library(rsyntax)

spacy tokens for: Mary loves John, and Mary was loved by John
tokens = tokens_spacy[tokens_spacy$doc_id == 'text3',]
tc = tokens_to_tcorpus(tokens)

two simple example tqueries
passive = tquery(pos = "VERB*", label = "predicate",

children(relation = c("agent"), label = "subject"))
active = tquery(pos = "VERB*", label = "predicate",

children(relation = c("nsubj", "nsubjpass"), label = "subject"))

tc$annotate_rsyntax("clause", pas=passive, act=active)
tc$tokens

if (interactive()) {
plot_tree(tc$tokens, annotation='clause')
}
if (interactive()) {
syntax_reader(tc$tokens, annotation = 'clause', value='subject')
}

tCorpus$code_dictionary

Dictionary lookup

70 tCorpus$code_dictionary

Description

Add a column to the token data that contains a code (the query label) for tokens that match the
dictionary

Usage:

R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

code_dictionary(...)

Arguments

dict A dictionary. Can be either a data.frame or a quanteda dictionary. If a data.frame
is given, it has to have a column named "string" (or use string_col argument) that
contains the dictionary terms. All other columns are added to the tCorpus $to-
kens data. Each row has a single string, that can be a single word or a sequence
of words seperated by a whitespace (e.g., "not bad"), and can have the common
? and * wildcards. If a quanteda dictionary is given, it is automatically converted
to this type of data.frame with the melt_quanteda_dict function. This can be
done manually for more control over labels.

token_col The feature in tc that contains the token text.

string_col If dict is a data.frame, the name of the column in dict that contains the dictionary
lookup string

sep A regular expression for separating multi-word lookup strings (default is " ",
which is what quanteda dictionaries use). For example, if the dictionary con-
tains "Barack Obama", sep should be " " so that it matches the consequtive
tokens "Barack" and "Obama". In some dictionaries, however, it might say
"Barack+Obama", so in that case sep = ’\\+’ should be used.

case_sensitive logical, should lookup be case sensitive?

column The name of the column added to $tokens. [column]_id contains the unique id
of the match. If a quanteda dictionary is given, the label for the match is in the
column named [column]. If a dictionary has multiple levels, these are added as
[column]_l[level].

use_wildcards Use the wildcards * (any number including none of any character) and ? (one or
none of any character). If FALSE, exact string matching is used. (":-)" versus
":" "-" ")"). This is only behind the scenes for the dictionary lookup, and will
not affect tokenization in the corpus.

ascii If true, convert text to ascii before matching

verbose If true, report progress

Value

the tCorpus

tCorpus$code_features 71

Examples

dict = data.frame(string = c('good','bad','ugl*','nice','not pret*', ':)', ':('),
sentiment=c(1,-1,-1,1,-1,1,-1))

tc = create_tcorpus(c('The good, the bad and the ugly, is nice :) but not pretty :('))
tc$code_dictionary(dict)
tc$tokens

tCorpus$code_features Code features in a tCorpus based on a search string

Description

like search_features, but instead of return hits only adds a column to the token data that contains
a code (the query label) for tokens that match the query. Note that only one code can be assigned to
each token, so if there are overlapping results for different queries, the code for the last query will
be used. This means that the order of queries (in the query argument) matters.

Usage:
R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

code_features(query, code=NULL, feature='token', column='code', ...)

Arguments

query A character string that is a query. See search_features for documentation of the
query language.

code The code given to the tokens that match the query (usefull when looking for
multiple queries). Can also put code label in query with # (see details)

feature The name of the feature column within which to search.
column The name of the column that is added to the data
add_column list of name-value pairs, used to add additional columns. The name will become

the column name, and the value should be a vector of the same length as the
query vector.

context_level Select whether the queries should occur within while "documents" or specific
"sentences".

as_ascii if TRUE, perform search in ascii.
verbose If TRUE, progress messages will be printed
overwrite If TRUE (default) and column already exists, overwrite previous results.
... alternative way to specify name-value pairs for adding additional columns

Examples

tc = create_tcorpus('Anna and Bob are secretive')

tc$code_features(c("actors# anna bob", "associations# secretive"))
tc$tokens

72 tCorpus$deduplicate

tCorpus$context Get a context vector

Description

Depending on the purpose, the context of an analysis can be the document level or sentence level.
the tCorpus$context() method offers a convenient way to get the context id of tokens for different
settings.

Arguments

context_level Select whether the context is document or sentence level

with_labels Return context as only ids (numeric, starting at 1) or with labels (factor)

Details

Usage:
R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

data(context_level = c('document','sentence'), with_labels = T)

Examples

tc <- create_tcorpus(c('Text one first sentence. Text one second sentence', 'Text two'),
split_sentences = TRUE)

doc <- tc$context() ## default context is doc_id (document level)
doc

sent <- tc$context('sentence') ## can specify sentence level
sent

tCorpus$deduplicate Deduplicate documents

Description

Deduplicate documents based on similarity scores. Can be used to filter out identical documents,
but also similar documents.

Note that deduplication occurs by reference (tCorpus_modify_by_reference) unless copy is set to
TRUE.

Usage:
R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

deduplicate(feature='token', date_col=NULL, meta_cols=NULL, hour_window=NULL, min_docfreq=2, max_docfreq_pct=0.5, measure=c('cosine','overlap_pct'), similarity=1, keep=c('first','last', 'random'), weight=c('norm_tfidf', 'tfidf', 'termfreq','docfreq'), ngrams=NA, print_duplicates=F, copy=F)

tCorpus$deduplicate 73

Arguments

feature the column name of the feature that is to be used for the comparison.

date_col The column name for a column with a date vector (in POSIXct). If given to-
gether with hour_window, only documents within the given hour_window will
be compared.

meta_cols a vector with names for columns in the meta data. If given, documents are only
considered duplicates if the values of these columns are identical (in addition to
having a high similarity score)

hour_window A vector of length 1 or 2. If length is 1, the same value is used for the left and
right side of the window. If length is 2, the first and second value determine the
left and right side. For example, the value 12 will compare each document to all
documents between the previous and next 12 hours, and c(-10, 36) will compare
each document to all documents between the previous 10 and the next 36 hours.

min_docfreq a minimum document frequency for features. This is mostly to lighten compu-
tational load. Default is 2, because terms that occur once cannot overlap across
documents

max_docfreq_pct

a maximum document frequency percentage for features. High frequency terms
contain little information for identifying duplicates. Default is 0.5 (i.e. terms
that occur in more than 50 percent of documents are ignored),

lowercase If True, make feature lowercase

measure the similarity measure. Currently supports cosine similarity (symmetric) and
overlap_pct (asymmetric)

similarity the similarity threshold used to determine whether two documents are dupli-
cates. Default is 1, meaning 100 percent identical.

keep select either ’first’, ’last’ or ’random’. Determines which document of duplicates
to delete. If a date is given, ’first’ and ’last’ specify whether the earliest or latest
document is kept.

weight a weighting scheme for the document-term matrix. Default is term-frequency
inverse document frequency with normalized rows (document length).

ngrams an integer. If given, ngrams of this length are used
print_deduplicates

if TRUE, print ids of duplicates that are deleted

verbose if TRUE, report progress

copy If TRUE, the method returns a new tCorpus object instead of deduplicating the
current one by reference.

Examples

d = data.frame(text = c('a b c d e',
'e f g h i j k',
'a b c'),

date = as.POSIXct(c('2010-01-01','2010-01-01','2012-01-01')))
tc = create_tcorpus(d)

74 tCorpus$delete_columns

tc$meta
dedup = tc$deduplicate(feature='token', date_col = 'date', similarity = 0.8, copy=TRUE)
dedup$meta

dedup = tc$deduplicate(feature='token', date_col = 'date', similarity = 0.8, keep = 'last',
copy=TRUE)

dedup$meta

tCorpus$delete_columns

Delete column from the data and meta data

Description

Usage:

Arguments

cnames the names of the columns to delete

Details

R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

delete_columns(cnames)

delete_meta_columns(cnames)

Examples

d = data.frame(text = c('Text one','Text two','Text three'),
date = c('2010-01-01','2010-01-01','2012-01-01'))

tc = create_tcorpus(d)

tc$tokens
tc$delete_columns('token')
tc$tokens

tc$meta
tc$delete_meta_columns('date')
tc$meta

tCorpus$feats_to_columns 75

tCorpus$feats_to_columns

Cast the "feats" column in UDpipe tokens to columns

Description

If the UDpipe parser is used in create_tcorpus, the ’feats’ column contains strings with features
(e.g, Number=Sing|PronType=Dem). To work with these nested features it is more convenient to
cast them to columns.

Arguments

keep Optionally, the names of features to keep

drop Optionally, the names of features to drop

rm_column If TRUE (default), remove the original column

Details

Usage:

R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

feats_to_columns(keep=NULL, drop=NULL, rm_column=TRUE)

Examples

if (interactive()) {
tc = create_tcorpus('This is a test Bobby.', udpipe_model='english-ewt')
tc$feats_to_columns()
tc$tokens

tc = create_tcorpus('This is a test Bobby.', udpipe_model='english-ewt')
tc$feats_to_columns(keep = c('Gender','Tense','Person'))
tc$tokens
}

tCorpus$feature_subset

Filter features

76 tCorpus$fold_rsyntax

Description

Similar to using tCorpus$subset, but instead of deleting rows it only sets rows for a specified feature
to NA. This can be very convenient, because it enables only a selection of features to be used in an
analysis (e.g. a topic model) but maintaining the context of the full article, so that results can be
viewed in this context (e.g. a topic browser).

Just as in subset, it is easy to use objects and functions in the filter, including the special functions
for using term frequency statistics (see documentation for tCorpus$subset).

Usage:
R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

feature_subset(column, new_column, subset)

Arguments

column the column containing the feature to be used as the input

subset logical expression indicating rows to keep in the tokens data. i.e. rows for which
the logical expression is FALSE will be set to NA.

new_column the column to save the filtered feature. Can be a new column or overwrite an
existing one.

min_freq an integer, specifying minimum token frequency.

min_docfreq an integer, specifying minimum document frequency.

max_freq an integer, specifying minimum token frequency.

max_docfreq an integer, specifying minimum document frequency.

min_char an integer, specifying minimum characters in a token

max_char an integer, specifying maximum characters in a token

Examples

tc = create_tcorpus('a a a a b b b c c')

tc$feature_subset('token', 'tokens_subset1', subset = token_id < 5)
tc$feature_subset('token', 'tokens_subset2', subset = freq_filter(token, min = 3))

tc$tokens

tCorpus$fold_rsyntax Fold rsyntax annotations

Description

If a tCorpus has rsyntax annotations (see annotate_rsyntax), it can be convenient to aggregate
tokens that have a certain semantic label. For example, if you have a query for labeling "source"
and "quote", you can add an aggegated value for the sources (such as a unique ID) as a column, and
then remove the quote tokens.

tCorpus$get 77

Arguments

annotation The name of an rsyntax annotation column

by_label The labels in this column for which you want to aggregate the tokens

... Specify the new aggregated columns in name-value pairs. The name is the name
of the new column, and the value should be a function over a column in $tokens.
For example: subject = paste(token, collapse = ’ ’) would create the column
’subject’, of which the values are the concatenated tokens. See examples for
more.

txt If TRUE, add _txt column with concatenated tokens for by_label

rm_by If TRUE (default), remove the column(s) specified in by_label

copy If TRUE, return a copy of the transformed tCorpus, instead of transforming the
tCorpus by reference

Details

Usage:

R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

fold_rsyntax(annotation, by_label, ...,
to_label=NULL, rm_by=T, copy=F)

Examples

tc = tc_sotu_udpipe$copy()
tc$udpipe_clauses()

tc$fold_rsyntax('clause', by_label = 'subject', subject = paste(token, collapse=' '))
tc$tokens

tCorpus$get Access the data from a tCorpus

Description

Get (a copy of) the token and meta data. For quick access recommend using tc$tokens and tc$meta
to get the tokens and meta data.tables, which does not copy the data. However, you should then
make sure to not change the data.tables by reference, or you might break the tCorpus.

Usage:

R6 active method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

get(columns=NULL, keep_df=F, as.df=F, subset=NULL, doc_id=NULL, token_id=NULL, safe_copy=T)

get_meta(columns=NULL, keep_df=F, as.df=F, subset=NULL, doc_id=NULL, safe_copy=T)

78 tCorpus$get

Arguments

columns character vector with the names of the columns

keep_df if True, the output will be a data.table (or data.frame) even if it only contains 1
columns

as.df if True, the output will be a regular data.frame instead of a data.table

subset Optionally, only get a subset of rows (see tCorpus$subset method)

doc_id A vector with document ids to select rows. Faster than subset, because it uses
binary search. Cannot be used in combination with subset. If duplicate doc_ids
are given, duplicate rows are returned.

token_id A vector with token indices. Can only be used in pairs with doc_id. For example,
if doc_id = c(1,1,1,2,2) and token_id = c(1,2,3,1,2), then the first three tokens of
doc 1 and the first 2 tokens of doc 2 are returned. This is mainly usefull for fast
(binary search) retrieval of specific tokens.

safe_copy for advanced use. The get methods always return a copy of the data, even if
the full data is returned (i.e. use get without parameters). This is to prevent
accidental changes within tCorpus data (which can break it) if the returned data
is modified by reference (see data.table documentation). If safe_copy is set to
FALSE and get is called without parameters—tc$get(safe_copy=F))—then no
copy is made, which is much faster and more memory efficient. Use this if you
need speed and efficiency, but make sure not to change the output data.table by
reference.

Examples

d = data.frame(text = c('Text one first sentence. Text one second sentence', 'Text two'),
medium = c('A','B'),
date = c('2010-01-01','2010-02-01'),
doc_id = c('D1','D2'))

tc = create_tcorpus(d, split_sentences = TRUE)

get token data
tc$tokens ## full data.table
tc$get(c('doc_id','token')) ## data.table with selected columns
head(tc$get('doc_id')) ## single column as vector
head(tc$get(as.df = TRUE)) ## return as regular data.frame

get subset
tc$get(subset = token_id %in% 1:2)

subset on keys using (fast) binary search
tc$get(doc_id = 'D1') ## for doc_id
tc$get(doc_id = 'D1', token_id = 5) ## for doc_id / token pairs

use get for meta data with get_meta
tc$meta

option to repeat meta data to match tokens

tCorpus$lda_fit 79

tc$get_meta(per_token = TRUE) ## (note that first doc is repeated, and rows match tc$n)

tCorpus$lda_fit Estimate a LDA topic model

Description

Estimate an LDA topic model using the LDA function from the topicmodels package. The pa-
rameters other than dtm are simply passed to the sampler but provide a workable default. See the
description of that function for more information

Usage:
R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

lda_fit(feature, create_feature=NULL, K=50, num.iterations=500, alpha=50/K,
eta=.01, burnin=250, context_level=c('document','sentence'), ...)

Arguments

feature the name of the feature columns

create_feature optionally, add a feature column that indicates the topic to which a feature was
assigned (in the last iteration). Has to be a character string, that will be the name
of the new feature column

K the number of clusters

num.iterations the number of iterations

method set method. see documentation for LDA function of the topicmodels package

alpha the alpha parameter

eta the eta parameter#’

burnin The number of burnin iterations

Value

A fitted LDA model, and optionally a new column in the tcorpus (added by reference)

Examples

if (interactive()) {
tc = create_tcorpus(sotu_texts, doc_column = 'id')
tc$preprocess('token', 'feature', remove_stopwords = TRUE, use_stemming = TRUE, min_freq=10)
set.seed(1)
m = tc$lda_fit('feature', create_feature = 'lda', K = 5, alpha = 0.1)
m
topicmodels::terms(m, 10)
tc$tokens

}

80 tCorpus$merge

tCorpus$merge Merge the token and meta data.tables of a tCorpus with another
data.frame

Description

Add columns to token/meta by merging with a data.frame df. Only possible for unique matches (i.e.
the columns specified in by are unique in df)

Arguments

df A data.frame (can be regular, data.table or tibble)

by The columns to match on. Must exist in both tokens/meta and df. If the columns
in tokens/meta and df have different names, use by.x and by.y

by.x The names of the columns used in tokens/meta

by.y The names of the columns used in df

columns Optionally, specify which specific columns from df to merge to tokens

Details

Usage:
R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

merge(df, by, by.x, by.y)

merge_meta(df, by, by.x, by.y)

Examples

d = data.frame(text = c('This is an example. Best example ever.', 'oh my god', 'so good'),
id = c('a','b','c'),
source =c('aa','bb','cc'))

tc = create_tcorpus(d, doc_col='id', split_sentences = TRUE)

df = data.frame(doc_id=c('a','b'), test=c('A','B'))
tc$merge(df, by='doc_id')
tc$tokens

df = data.frame(doc_id=c('a','b'), sentence=1, test2=c('A','B'))
tc$merge(df, by=c('doc_id', 'sentence'))
tc$tokens

df = data.frame(doc_id=c('a','b'), sentence=1, token_id=c(3,4), test3=c('A','B'))
tc$merge(df, by=c('doc_id', 'sentence', 'token_id'))
tc$tokens

meta = data.frame(doc_id=c('a','b'), test=c('A','B'))

tCorpus$preprocess 81

tc$merge_meta(meta, by='doc_id')
tc$meta

meta = data.frame(source=c('aa'), test2=c('A'))
tc$merge_meta(meta, by='source')
tc$meta

tCorpus$preprocess Preprocess feature

Description

Usage:

Arguments

column the column containing the feature to be used as the input

new_column the column to save the preprocessed feature. Can be a new column or overwrite
an existing one.

lowercase make feature lowercase

ngrams create ngrams. The ngrams match the rows in the token data, with the feature
in the row being the last token of the ngram. For example, given the features
"this is an example", the third feature ("an") will have the trigram "this_is_an".
Ngrams at the beginning of a context will have empty spaces. Thus, in the
previous example, the second feature ("is") will have the trigram "_is_an".

ngram_context Ngrams will not be created across contexts, which can be documents or sen-
tences. For example, if the context_level is sentences, then the last token of
sentence 1 will not form an ngram with the first token of sentence 2.

as_ascii convert characters to ascii. This is particularly usefull for dealing with special
characters.

remove_punctuation

remove (i.e. make NA) any features that are only punctuation (e.g., dots, comma’s)
remove_stopwords

remove (i.e. make NA) stopwords. (!) Make sure to set the language argument
correctly.

remove_numbers remove features that are only numbers

use_stemming reduce features (tokens) to their stem

language The language used for stopwords and stemming

min_freq an integer, specifying minimum token frequency.

min_docfreq an integer, specifying minimum document frequency.

max_freq an integer, specifying minimum token frequency.

max_docfreq an integer, specifying minimum document frequency.

min_char an integer, specifying minimum number of characters in a term

max_char an integer, specifying maximum number of characters in a term

82 tCorpus$replace_dictionary

Details

R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

preprocess(column='token', new_column='feature', lowercase=T, ngrams=1,
ngram_context=c('document', 'sentence'), as_ascii=F, remove_punctuation=T,
remove_stopwords=F, remove_numbers=F, use_stemming=F, language='english',
min_freq=NULL, min_docfreq=NULL, max_freq=NULL, max_docfreq=NULL, min_char=NULL, max_char=NULL)

Examples

tc = create_tcorpus('I am a SHORT example sentence! That I am!')

default is lowercase without punctuation
tc$preprocess('token', 'preprocessed_1')

delete stopwords and perform stemming
tc$preprocess('token', 'preprocessed_2', remove_stopwords = TRUE, use_stemming = TRUE)

filter on minimum frequency
tc$preprocess('token', 'preprocessed_3', min_freq=2)

make ngrams
tc$preprocess('token', 'preprocessed_4', ngrams = 3)

tc$tokens

tCorpus$replace_dictionary

Replace tokens with dictionary match

Description

Uses search_dictionary, and replaces tokens that match the dictionary lookup term with the
dictionary code. Multi-token matches (e.g., "Barack Obama") will become single tokens. Multiple
lookup terms per code can be used to deal with alternatives such as "Barack Obama", "president
Obama" and "Obama".

This method can also be use to concatenate ASCII symbols into emoticons, given a dictionary of
emoticons.

Usage:

R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

replace_dictionary(...)

tCorpus$replace_dictionary 83

Arguments

dict A dictionary. Can be either a data.frame or a quanteda dictionary. If a data.frame
is given, it has to have a column named "string" (or use string_col argument) that
contains the dictionary terms, and a column "code" (or use code_col argument)
that contains the label/code represented by this string. Each row has a single
string, that can be a single word or a sequence of words seperated by a whites-
pace (e.g., "not bad"), and can have the common ? and * wildcards. If a quanteda
dictionary is given, it is automatically converted to this type of data.frame with
the melt_quanteda_dict function. This can be done manually for more control
over labels. Finally, you can also just pass a character vector. All multi word
strings (like emoticons) will then be collapsed into single tokens.

token_col The feature in tc that contains the token text.
string_col If dict is a data.frame, the name of the column in dict with the dictionary lookup

string. Default is "string"
code_col The name of the column in dict with the dictionary code/label. Default is "code".

If dict is a quanteda dictionary with multiple levels, "code_l2", "code_l3", etc.
can be used to select levels.

replace_cols The names of the columns in tc$tokens that will be replaced by the dictionary
code. Default is the column on which the dictionary is applied, but in some
cases it might make sense to replace multiple columns (like token and lemma)

sep A regular expression for separating multi-word lookup strings (default is " ",
which is what quanteda dictionaries use). For example, if the dictionary con-
tains "Barack Obama", sep should be " " so that it matches the consequtive
tokens "Barack" and "Obama". In some dictionaries, however, it might say
"Barack+Obama", so in that case sep = ’\+’ should be used.

code_from_features

If TRUE, instead of replacing features with the matched code columnm, use the
most frequent occuring string in the features.

code_sep If code_from_features is TRUE, the separator for pasting features together. De-
fault is an underscore, which is recommended because it has special features
in corpustools. Most importantly, if a query or dictionary search is performed,
multi-word tokens concatenated with an underscore are treated as separate con-
secutive words. So, "Bob_Smith" would still match a lookup for the two conse-
qutive words "bob smith"

decrement_ids If TRUE (default), decrement token ids after concatenating multi-token matches.
So, if the tokens c(":", ")", "yay") have token_id c(1,2,3), then after concatenat-
ing ASCII emoticons, the tokens will be c(":)", "yay") with token_id c(1,2)

case_sensitive logical, should lookup be case sensitive?
use_wildcards Use the wildcards * (any number including none of any character) and ? (one or

none of any character). If FALSE, exact string matching is used
ascii If true, convert text to ascii before matching
verbose If true, report progress

Value

A vector with the id value (taken from dict$id) for each row in tc$tokens

84 tCorpus$search_recode

Examples

tc = create_tcorpus('happy :) sad :(happy 8-)')
tc$tokens ## tokenization has broken up emoticons (as it should)

corpustools dictionary lookup automatically normalizes tokenization of
tokens and dictionary strings. The dictionary string ":)" would match both
the single token ":)" and two consequtive tokens c(":", ")"). This
makes it easy and foolproof to look for emoticons like this:
emoticon_dict = data.frame(

code = c('happy_emo','happy_emo', 'sad_emo'),
string = c(':)', '8-)', ':('))

tc$replace_dictionary(emoticon_dict)
tc$tokens

If a string is passed to replace dictionary, it will collapse multi-word
strings. .
tc = create_tcorpus('happy :) sad :(Barack Obama')
tc$tokens
tc$replace_dictionary(c(':)', '8-)', 'Barack Obama'))
tc$tokens

tCorpus$search_recode Recode features in a tCorpus based on a search string

Description

Search features (see search_features) and replace features with a new value

Usage:

R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

search_recode(feature, new_value, keyword, condition = NA, condition_once = FALSE)

Arguments

feature The feature in which to search

new_value the character string with which all features that are found are replaced

query See search_features for the query parameters

... Additional search_features parameters. See search_features

tCorpus$set 85

tCorpus$set Modify the token and meta data.tables of a tCorpus

Description

Modify the token/meta data.table by setting the values of one (existing or new) column. The subset
argument can be used to modify only subsets of columns, and can be a logical vector (select TRUE
rows), numeric vector (indices of TRUE rows) or logical expression (e.g. pos == ’noun’). If a new
column is made whie using a subset, then the rows outside of the selection are set to NA.

Arguments

column Name of a new column (to create) or existing column (to transform)

value An expression to be evaluated within the token/meta data, or a vector of the
same length as the number of rows in the data. Note that if a subset is used, the
length of value should be the same as the length of the subset (the TRUE cases
of the subset expression) or a single value.

subset logical expression indicating rows to keep in the tokens data or meta data

subset_value If subset is used, should value also be subsetted? Default is TRUE, which is
what you want if the value has the same length as the full data.table (which
is the case if a column in tokens is used). However, if the vector of values is
already of the length of the subset, subset_value should be FALSE

Details

Usage:
R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

set(column, value, subset)

set_meta(column, value, subset)

Examples

tc = create_tcorpus(sotu_texts[1:5,], doc_column = 'id')

tc$tokens ## show original

create new column
i <- 1:tc$n
tc$set(column = 'i', i)
create new column based on existing column(s)
tc$set(column = 'token_upper', toupper(token))
use subset to modify existing column
tc$set('token', paste0('***', token, '***'), subset = token_id == 1)
use subset to create new column with NA's
tc$set('second_token', token, subset = token_id == 2)

86 tCorpus$set_levels

tc$tokens ## show after set

use set for meta data with set_meta
tc$set_meta('party_pres', paste(party, president, sep=': '))
tc$meta

tCorpus$set_levels Change levels of factor columns

Description

For factor columns, the levels can be changed directly (and by reference). This is particularly usefull
for fast preprocessing (e.g., making tokens lowercase,)

Arguments

column the name of the column

levels The new levels

Details

Usage:

R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

set_levels(column, levels)

set_meta_levels(column, levels)

Examples

tc = create_tcorpus(c('Text one first sentence. Text one second sentence', 'Text two'))

change factor levels of a column in the token data
unique_tokens <- tc$get_levels('token')
tc$set_levels('token', toupper(unique_tokens))
tc$tokens

tCorpus$set_name 87

tCorpus$set_name Change column names of data and meta data

Description

Usage:

Arguments

oldname the current/old column name

newname the new column name

Details

R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

set_name(oldname, newname)

set_meta_name(oldname, newname)

Examples

tc = create_tcorpus(sotu_texts[1:5,], doc_column = 'id')

change column name in token data
tc$names ## original column names
tc$set_name(oldname = 'token', newname = 'word')
tc$tokens

change column name in meta data
tc$meta_names ## original column names
tc$set_meta_name(oldname = 'party', newname = 'clan')
tc$set_meta_name(oldname = 'president', newname = 'clan leader')
tc$meta

tCorpus$subset Subset a tCorpus

88 tCorpus$subset

Description

Returns the subset of a tCorpus. The selection can be made separately (and simultaneously) for
the token data (using subset) and the meta data (using subset_meta). The subset arguments work
according to the subset.data.table function.

There are two flavours. You can either use subset(tc, ...) or tc$subset(...). The difference is that
the second approach changes the tCorpus by reference. In other words, tc$subset() will delete the
rows from the tCorpus, instead of creating a new tCorpus. Modifying the tCorpus by reference is
more efficient (which becomes important if the tCorpus is large), but the more classic subset(tc, ...)
approach is often more obvious.

Subset can also be used to select rows based on token/feature frequences. This is a common step
in corpus analysis, where it often makes sense to ignore very rare and/or very frequent tokens. To
do so, there are several special functions that can be used within a subset call. The freq_filter()
and docfreq_filter() can be used to filter terms based on term frequency and document frequency,
respectively. (see examples)

The subset_meta() method is an alternative for using subset(subset_meta = ...), that is added for
consistency with the other _meta methods.

Note that you can also use the tCorpus$feature_subset method if you want to filter out low/high
frequency tokens, but do not want to delete the rows in the tCorpus.

Usage:
R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

subset(tc, subset = NULL, subset_meta = NULL,
window = NULL)

tc$subset(subset = NULL, subset_meta = NULL,
window = NULL, copy = F)

tc$subset_meta(subset = NULL, copy = F)

Arguments

subset logical expression indicating rows to keep in the tokens data.

subset_meta logical expression indicating rows to keep in the document meta data.

window If not NULL, an integer specifiying the window to be used to return the subset.
For instance, if the subset contains token 10 in a document and window is 5, the
subset will contain token 5 to 15. Naturally, this does not apply to subset_meta.

copy If TRUE, the method returns a new tCorpus object instead of subsetting the
current one. This is added for convenience when analyzing a subset of the data.
e.g., tc_nyt = tc$subset_meta(medium == "New_York_Times", copy=T)

Examples

tc = create_tcorpus(sotu_texts[1:5,], doc_column = 'id')
tc$n ## original number of tokens

select only first 20 tokens per document
tc2 = subset(tc, token_id < 20)
tc2$n

tCorpus$subset_query 89

Note that the original is untouched
tc$n

Now we subset by reference. This doesn't make a copy, but changes tc itself
tc$subset(token_id < 20)
tc$n

you can filter on term frequency and document frequency with the freq_filter() and
docfreq_filter() functions
tc = create_tcorpus(sotu_texts[c(1:5,800:805),], doc_column = 'id')
tc$subset(freq_filter(token, min = 2, max = 4))
tc$tokens

subset can be used for meta data by using the subset_meta argument, or the subset_meta method
tc$n_meta
tc$meta
tc$subset(subset_meta = president == 'Barack Obama')
tc$n_meta

tCorpus$subset_query Subset tCorpus token data using a query

Description

A convenience function that searches for contexts (documents, sentences), and uses the results to
subset the tCorpus token data.

See the documentation for search_contexts for an explanation of the query language.

Usage:
R6 method for class tCorpus. Use as tc$method (where tc is a tCorpus object).

subset_query(query, feature = 'token', context_level = c('document','sentence','window'))

Arguments

query A character string that is a query. See search_contexts for query syntax.

feature The name of the feature columns on which the query is used.

context_level Select whether the query and subset are performed at the document or sentence
level.

window If used, uses a word distance as the context (overrides context_level)

as_ascii if TRUE, perform search in ascii.

not If TRUE, perform a NOT search. Return the articles/sentences for which the
query is not found.

copy If TRUE, return modified copy of data instead of subsetting the input tcorpus by
reference.

90 tCorpus$udpipe_clauses

Examples

text = c('A B C', 'D E F. G H I', 'A D', 'GGG')
tc = create_tcorpus(text, doc_id = c('a','b','c','d'), split_sentences = TRUE)

subset by reference
tc$subset_query('A')
tc$meta

using copy mechanic
class(tc$tokens$doc_id)
tc2 = tc$subset_query('A AND D', copy=TRUE)

tc2$get_meta()

tc$meta ## (unchanged)

tCorpus$udpipe_clauses

Add columns indicating who did what

Description

An off-the-shelf application of rsyntax for extracting subject-verb clauses. Designed for working
with a tCorpus created with udpipe_tcorpus.

Arguments

column The name of the column in $tokens to store the results.

tqueries A list of tQueries. By default uses the off-the-shelf tqueries in udpipe_clause_tqueries

Value

a tCorpus

Examples

tc = tc_sotu_udpipe$copy()
tc$udpipe_clauses()
if (interactive()) {

tc_plot_tree(tc, token, lemma, POS, annotation='clause')
browse_texts(tc, rsyntax='clause', value='subject')

}

tCorpus$udpipe_quotes 91

tCorpus$udpipe_quotes Add columns indicating who said what

Description

An off-the-shelf application of rsyntax for extracting quotes. Designed for working with a tCorpus
created with udpipe_tcorpus.

Arguments

tqueries A list of tqueries. By default uses the off-the-shelf tqueries in udpipe_quote_tqueries.

span_tqueries Additional tqueries for finding candidates for ’span quotes’ (i.e. quotes that span
multiple sentences, indicated by quotation marks). By default uses the off-the-
shelf tqueries in udpipe_spanquote_tqueries.

Details

Default tqueries are provided for detecting source-quote relations within sentences (udpipe_quote_tqueries),
and for detecting source candidates for text between quotation marks that can span across multiple
sentences (udpipe_spanquote_tqueries). These have mainly been developed and tested for the
english-ewt udpipe model.

There are two ways to customize this function. One is to specify a custom character vector of verb
lemma. This vector should then be passed as an argument to the two functions for generarting the
default tqueries. The second (more advanced) way is to provide a custom list of tqueries. (Note that
the udpipe_quote_tqueries and udpipe_spanquote_tqueries functions simply create lists of queries.
You can create new lists, or add tqueries to these lists). !! If you create custom tqueries, make sure
that the labels for the quote and source tokens are ’source’ and ’quote’. For the spanquote_tqueries,
the label for the source candidate should be ’source’.

Value

the columns ’quote’, ’quote_id’, and ’quote_verbatim’ are added to tokens

Examples

Not run:
txt = 'Bob said that he likes Mary. John did not like that:

"how dare he!". "It is I, John, who likes Mary!!"'
tc = udpipe_tcorpus(txt, model = 'english-ewt')
tc$udpipe_quotes()

if (interactive()) {
tc_plot_tree(tc, token, lemma, POS, annotation='quote')
browse_texts(tc, rsyntax='quote', value='source')

}

you can provide your own lists of tqueries, or use the two
query generating functions to customize the specific 'verb lemma'

92 tCorpus_create

(i.e. the lemma for verbs that indicate speech)

custom_verb_lemma = c('say','state') ## this should be longer
quote_tqueries = udpipe_quote_tqueries(custom_verb_lemma)
span_quote_tqueries = udpipe_spanquote_tqueries(custom_verb_lemma)

note that these use simply lists with tqueries, so you can also
create your own list or customize these lists

quote_tqueries
span_quote_tqueries

if (interactive()) {
tc$udpipe_quotes(tqueries = quote_tqueries, span_tqueries = span_quote_tqueries)
tc_plot_tree(tc, token, lemma, POS, annotation='quote')
browse_texts(tc, rsyntax='quote', value='source')
}

End(Not run)

tCorpus_compare Corpus comparison

Description

(back to overview)

Details

Compare vocabulary of two corpora

compare_corpus() Compare vocabulary of one tCorpus to another
compare_subset() Compare subset of a tCorpus to the rest of the tCorpus

tCorpus_create Creating a tCorpus

Description

(back to overview)

tCorpus_data 93

Details

Create a tCorpus

create_tcorpus() Create a tCorpus from raw text input
tokens_to_tcorpus() Create a tCorpus from a data.frame of already tokenized texts

tCorpus_data Methods and functions for viewing, modifying and subsetting tCorpus
data

Description

(back to overview)

Details

Get data

$get() Get (by default deep copy) token data, with the possibility to select columns and subset. Instead of copying you can also access the token data with tc$tokens
$get_meta() Get meta data, with the possibility to select columns and subset. Like tokens, you can also access meta data with tc$meta
get_dtm() Create a document term matrix
get_dfm() Create a document term matrix, using the Quanteda dfm format
$context() Get a context vector. Currently supports documents or globally unique sentences.

Modify
The token and meta data can be modified with the set* and delete* methods. All modifications are
performed by reference.

$set() Modify the token data by setting the values of one (existing or new) column.
$set_meta() The set method for the document meta data
$set_levels() Change the levels of factor columns.
$set_meta_levels() Change the levels of factor columns in the meta data
$set_name() Modify column names of token data.
$set_meta_name() Delete columns in the meta data
$delete_columns() Delete columns.
$delete_meta_columns() Delete columns in the meta data

Modifying is restricted in certain ways to ensure that the data always meets the assumptions required
for tCorpus methods. tCorpus automatically tests whether assumptions are violated, so you don’t
have to think about this yourself. The most important limitations are that you cannot subset or
append the data. For subsetting, you can use the tCorpus$subset method, and to add data to a
tcorpus you can use the merge_tcorpora function.

Subsetting, merging/adding

94 tCorpus_features

subset() Modify the token and/or meta data using the subset function. A subset expression can be specified for both the token data (subset) and the document meta data (subset_meta).
subset_query() Subset the tCorpus based on a query, as used in search_contexts
$subset() Like subset, but as an R6 method that changes the tCorpus by reference
$subset_query() Like subset_query, but as an R6 method that changes the tCorpus by reference

Fields

For the sake of convenience, the number of rows and column names of the data and meta data.tables
can be accessed directly.

$n The number of tokens (i.e. rows in the data)
$n_meta The number of documents (i.e. rows in the document meta data)
$names The names of the token data columns
$names_meta The names of the document meta data columns

tCorpus_docsim Document similarity

Description

(back to overview)

Details

Compare documents, and perform similarity based deduplication

compare_documents() Compare documents
$deduplicate() Remove duplicate documents

tCorpus_features Preprocessing, subsetting and analyzing features

Description

(back to overview)

tCorpus_modify_by_reference 95

Details

Pre-process features

$preprocess() Create or modify a feature by preprocessing an existing feature
$feature_subset() Similar to using subset, but instead of deleting rows it only sets rows for a specified feature to NA.

Inspect features

feature_stats() Create a data.frame with feature statistics
top_features() Show top features, optionally grouped by a given factor

tCorpus_modify_by_reference

Modify tCorpus by reference

Description

(back to overview)

Details

If any tCorpus method is used that changes the corpus (e.g., set, subset), the change is made by
reference. This is convenient when working with a large corpus, because it means that the corpus
does not have to be copied when changes are made, which is slower and less memory efficient.

To illustrate, for a tCorpus object named ‘tc‘, the subset method can be called like this:

tc$subset(doc_id %in% selection)
The ‘tc‘ object itself is now modified, and does not have to be assigned to a name, as would be the
more common R philosophy. Like this:

tc = tc$subset(doc_id %in% selection)
The results of both lines of code are the same. The assignment in the second approach is not
necessary, but doesn’t harm either because tc$subset returns the modified corpus invisibly (see
?invisible if that sounds spooky).

Be aware, however, that the following does not work!!

tc2 = tc$subset(doc_id %in% selection)
In this case, tc2 does contain the subsetted corpus, but tc itself will also be subsetted!!

Using the R6 method for subset forces this approach on you, because it is faster and more memory
efficient. If you do want to make a copy, there are several solutions.

Firstly, for some methods we provide identical functions. For example, instead of the $subset() R6
method, we can use the subset() function.

tc2 = subset(tc, doc_id %in% selection)
We promise that only the R6 methods (called as tc$method()) will change the data by reference.

96 tCorpus_semnet

A second option is that R6 methods where copying is often usefull have copy parameter Modifying
by reference only happens in the R6 methods

tc2 = tc$subset(doc_id %in% selection, copy=TRUE)

Finally, you can always make a deep copy of the entire tCorpus before modifying it, using the
$copy() method.

tc2 = tc$copy()

tCorpus_querying Use Boolean queries to analyze the tCorpus

Description

(back to overview)

Details

Feature-level queries

search_features()) Search for features based on keywords and conditions
$code_features()) Add a column to the token data based on feature search results
$search_recode() Use the search_features query syntax to recode features
feature_associations() Given a query, get words that often co-occur nearby
kwic() Get keyword-in-context (kwic) strings
browse_hits() Create full-text browsers with highlighted search hits

Context-level queries

search_contexts() Search for documents or sentences using Lucene-like queries
$subset_query() use the search_contexts query syntax to subset the tCorpus

tCorpus_semnet Feature co-occurrence based semantic network analysis

Description

(back to overview)

tCorpus_topmod 97

Details

Create networks

semnet) Feature co-occurrence within contexts (documents, sentences)
semnet_window() Feature co-occurrence within a specified token distance

Support functions for analyzing and visualizing the semantic network

ego_semnet() Create an ego network from an Igraph network
plot_semnet() Convenience function for visualizing an Igraph network, specialized for semantic networks

tCorpus_topmod Topic modeling

Description

(back to overview)

Details

Train a topic model

$lda_fit() Latent Dirichlet Allocation

tc_plot_tree Visualize a dependency tree

Description

A wrapper for the plot_tree function, that can be used directly on a tCorpus.

Usage

tc_plot_tree(
tc,
...,
annotation = NULL,
sentence_i = 1,
doc_id = NULL,
pdf_file = NULL

)

98 tc_sotu_udpipe

Arguments

tc a tCorpus

... Arguments passed to plot_tree. Most importantly, this is used to select which
specific columns to display on the bottom rows. For instance, tc_plot_tree(tc,
token, lemma, POS) shows only these three columns.

annotation Optionally, the name of a column with an rsyntax annotation.

sentence_i By default, plot_tree uses the first sentence (sentence_i = 1) in the data. sen-
tence_i can be changed to select other sentences by position (the i-th unique
sentence in the data). Note that sentence_i does not refer to the values in the
sentence column (for this use the sentence argument together with doc_id)

doc_id Optionally, the document id can be specified. If so, sentence_i refers to the i-th
sentence within the given document.

pdf_file Directly save the plot as a pdf file

Value

plots a dependency tree.

Examples

if (interactive())
tc_plot_tree(tc_sotu_udpipe, token, lemma, POS)

tc_sotu_udpipe A tCorpus with a small sample of sotu paragraphs parsed with udpipe

Description

A tCorpus with a small sample of sotu paragraphs parsed with udpipe

Usage

data(tc_sotu_udpipe)

Format

data.frame

tokens_to_tcorpus 99

tokens_to_tcorpus Create a tcorpus based on tokens (i.e. preprocessed texts)

Description

Create a tcorpus based on tokens (i.e. preprocessed texts)

Usage

tokens_to_tcorpus(
tokens,
doc_col = "doc_id",
token_id_col = "token_id",
token_col = NULL,
sentence_col = NULL,
parent_col = NULL,
meta = NULL,
meta_cols = NULL,
feature_cols = NULL,
sent_is_local = T,
token_is_local = T,
...

)

Arguments

tokens A data.frame in which rows represent tokens, and columns indicate (at least) the
document in which the token occured (doc_col) and the position of the token in
that document or globally (token_id_col)

doc_col The name of the column that contains the document ids/names

token_id_col The name of the column that contains the positions of tokens. If NULL, it
is assumed that the data.frame is ordered by the order of tokens and does not
contain gaps (e.g., filtered out tokens)

token_col Optionally, the name of the column that contains the token text. This column
will then be renamed to "token" in the tcorpus, which is the default name for
many functions (e.g., querying, printing text)

sentence_col Optionally, the name of the column that indicates the sentences in which tokens
occured. This can be necessary if tokens are not local at the document level
(see token_is_local argument), and sentence information can be used in several
tcorpus functions.

parent_col Optionally, the name of the column that contains the id of the parent (if a depen-
dency parser was used). If token_is_local = FALSE, then the token_ids will be
transormed, so parent ids need to be changed as well. Default is ’parent’, but if
this column is not present the parent is ignored.

meta Optionally, a data.frame with document meta data. Needs to contain a column
with the document ids (with the same name)

100 tokenWindowOccurence

meta_cols Alternatively, if there are document meta columns in the tokens data.table, meta_cols
can be used to recognized them. Note that these values have to be unique within
documents.

feature_cols Optionally, specify which columns to include in the tcorpus. If NULL, all col-
umn are included (except the specified columns for documents, sentences and
positions)

sent_is_local Sentences in the tCorpus are assumed to be locally unique within documents.
If sent_is_local is FALSE, then sentences are transformed to be locally unique.
However, it is then assumed that the first sentence in a document is sentence 1,
which might not be the case if tokens (input) is a subset.

token_is_local Same as sent_is_local, but for token_id. !! if the data has a parent column, make
sure to specify parent_col, so that the parent ids are also transformed

... not used

Examples

head(corenlp_tokens)

tc = tokens_to_tcorpus(corenlp_tokens, doc_col = 'doc_id',
sentence_col = 'sentence', token_id_col = 'id')

tc

meta = data.frame(doc_id = 1, medium = 'A', date = '2010-01-01')
tc = tokens_to_tcorpus(corenlp_tokens, doc_col = 'doc_id',

sentence_col = 'sentence', token_id_col = 'id', meta=meta)
tc

tokenWindowOccurence Gives the window in which a term occured in a matrix.

Description

This function returns the occurence of tokens (position.matrix) and the window of occurence (win-
dow.matrix). This format enables the co-occurence of tokens within sliding windows (i.e. token
distance) to be calculated by multiplying position.matrix with window.matrix.

Usage

tokenWindowOccurence(
tc,
feature,
context_level = c("document", "sentence"),
window.size = 10,
direction = "<>",
distance_as_value = F,
batch_rows = NULL,
drop_empty_terms = T

)

top_features 101

Arguments

tc a tCorpus object

feature The name of the feature column

context_level Select whether to use "document" or "sentence" as context boundaries

window.size The distance within which tokens should occur from each other to be counted as
a co-occurence.

direction a string indicating whether only the left (’<’) or right (’>’) side of the window,
or both (’<>’), should be used.

distance_as_value

If True, the values of the matrix will represent the shorts distance to the oc-
curence of a feature

batch_rows Used in functions that call this function in batches
drop_empty_terms

If TRUE, emtpy terms (with zero occurence) will be dropped

Value

A list with two matrices. position.mat gives the specific position of a term, and window.mat gives
the window in which each token occured. The rows represent the position of a term, and matches
the input of this function (position, term and context). The columns represents terms.

top_features Show top features

Description

Show top features

Usage

top_features(
tc,
feature,
n = 10,
group_by = NULL,
group_by_meta = NULL,
rank_by = c("freq", "chi2"),
dropNA = T,
return_long = F

)

102 transform_rsyntax

Arguments

tc a tCorpus

feature The name of the feature

n Return the top n features

group_by A column in the token data to group the top features by. For example, if token
data contains part-of-speech tags (pos), then grouping by pos will show the top
n feature per part-of-speech tag.

group_by_meta A column in the meta data to group the top features by.

rank_by The method for ranking the terms. Currently supports frequency (default) and
the ’Chi2’ value for the relative frequency of a term in a topic compared to the
overall corpus. If return_long is used, the Chi2 score is also returned, but note
that there are negative Chi2 scores. This is used to indicate that the relative
frequency of a feature in a group was lower than the relative frequency in the
corpus (i.e. under-represented).

dropNA if TRUE, drop NA features

return_long if TRUE, results will be returned in a long format that contains more informa-
tion.

Value

a data.frame

Examples

tc = tokens_to_tcorpus(corenlp_tokens, token_id_col = 'id')

top_features(tc, 'lemma')
top_features(tc, 'lemma', group_by = 'NER', group_by_meta='doc_id')

transform_rsyntax Apply rsyntax transformations

Description

This is an experimental function for applying rsyntax transformations directly on a tcorpus, to cre-
ate a new tcorpus with the transformed tokens. The argument f should be self defined function
that wraps rsyntax transformations. Or more generally, a function that takes a tokens data.frame
(or data.table) as input, and returns a tokens data.frame (or data.table). For examples, see corpus-
tools:::ud_relcl, or corpustools::udpipe_simplify for a function that wraps multiple transformations.

Usage

transform_rsyntax(tc, f, ...)

udpipe_clause_tqueries 103

Arguments

tc a tCorpus

f functions that perform rsyntax tree transformations

... arguments passed to f

Value

a tCorpus after applying the transformations

Examples

if (interactive()) {
tc = tc_sotu_udpipe$copy()
tc2 = transform_rsyntax(tc, udpipe_simplify)

browse_texts(tc2)
rsyntax::plot_tree(tc$tokens, token, lemma, POS, sentence_i=20)
rsyntax::plot_tree(tc2$tokens, token, lemma, POS, sentence_i=20)

}

udpipe_clause_tqueries

Get a list of tqueries for extracting who did what

Description

An off-the-shelf list of tqueries for extracting subject-verb clauses. Designed for working with a
tCorpus created with udpipe_tcorpus.

Usage

udpipe_clause_tqueries(verbs = NULL, exclude_verbs = verb_lemma("quote"))

Arguments

verbs A character vector for specific verbs to use. By default uses all verbs (except for
those specified in exclude_verbs)

exclude_verbs A character vector for specific verbs NOT to use. By default uses the verbs that
indicate speech (that are used for extracting who said what, in udpipe_quote_tqueries)

Examples

udpipe_clause_tqueries()

104 udpipe_simplify

udpipe_quote_tqueries Get a list of tqueries for extracting quotes

Description

An off-the-shelf list of tqueries for extracting quotes. Designed for working with a tCorpus created
with udpipe_tcorpus.

Usage

udpipe_quote_tqueries(say_verbs = verb_lemma("quote"))

Arguments

say_verbs A character vector of verb lemma that indicate speech (e.g., say, state). A de-
fault list is included in verb_lemma(’quote’), but certain lemma might be more
accurate/appropriate depending on the corpus.

Examples

udpipe_quote_tqueries()

udpipe_simplify Simplify tokenIndex created with the udpipe parser

Description

This is an off-the-shelf implementation of several rsyntax transformation for simplifying text.

Usage

udpipe_simplify(
tokens,
split_conj = T,
rm_punct = F,
new_sentences = F,
rm_mark = F

)

Arguments

tokens A tokenIndex, based on output from the ud parser.
split_conj If TRUE, split conjunctions into separate sentences
rm_punct If TRUE, remove punctuation afterwards
new_sentences If TRUE, assign new sentence and token_id after splitting
rm_mark If TRUE, remove children with a mark relation if this is used in the simplifica-

tion.

udpipe_spanquote_tqueries 105

Value

a tokenIndex

Examples

if (interactive()) {
tc = tc_sotu_udpipe$copy()
tc2 = transform_rsyntax(tc, udpipe_simplify)

browse_texts(tc2)
rsyntax::plot_tree(tc_sotu_udpipe$tokens, token, lemma, POS, sentence_i=20)
rsyntax::plot_tree(tc2$tokens, token, lemma, POS, sentence_i=20)

}

udpipe_spanquote_tqueries

Get a list of tqueries for finding candidates for span quotes.

Description

Quote extraction with tqueries is limited to quotes within sentences. When (verbatim) quotes span
multiple sentences (which we call span quotes here), they are often indicated with quotation marks.
While it is relatively easy to identify these quotes, it is less straightforward to identify the sources of
these quotes. A good approach is to first apply tqueries for finding quotes within sentences, because
a source mentioned just before (we use 2 sentences) a span quote is often also the source of this
span quote. For cases where there is no previous source, we can apply simple queries for finding
source candidates. Thats what the tqueries created with the current function are for.

Usage

udpipe_spanquote_tqueries(say_verbs = verb_lemma("quote"))

Arguments

say_verbs A character vector of verb lemma that indicate speech (e.g., say, state). A de-
fault list is included in verb_lemma(’quote’), but certain lemma might be more
accurate/appropriate depending on the corpus.

Details

This procedure is supported in rsyntax with the add_span_quotes function. In corpustools this
function is implemented within the udpipe_quotes method. The current function provides the
default tqueries for the span quotes.

Examples

udpipe_spanquote_tqueries()

106 udpipe_tcorpus

udpipe_tcorpus Create a tCorpus using udpipe

Description

This is simply shorthand for using create_tcorpus with the udpipe_ arguments and certain specific
settings. This is the way to create a tCorpus if you want to use the syntax analysis functionalities.

Usage

udpipe_tcorpus(x, ...)

S3 method for class 'character'
udpipe_tcorpus(
x,
model = "english-ewt",
doc_id = 1:length(x),
meta = NULL,
max_sentences = NULL,
model_path = getwd(),
cache = 3,
cores = NULL,
batchsize = 50,
use_parser = T,
start_end = F,
verbose = T,
...

)

S3 method for class 'data.frame'
udpipe_tcorpus(
x,
model = "english-ewt",
text_columns = "text",
doc_column = "doc_id",
max_sentences = NULL,
model_path = getwd(),
cache = 3,
cores = 1,
batchsize = 50,
use_parser = T,
start_end = F,
verbose = T,
...

)

S3 method for class 'factor'

udpipe_tcorpus 107

udpipe_tcorpus(x, ...)

S3 method for class 'corpus'
udpipe_tcorpus(x, ...)

Arguments

x main input. can be a character (or factor) vector where each value is a full text,
or a data.frame that has a column that contains full texts.

... Arguments passed to create_tcorpus.character

model The name of a Universal Dependencies language model (e.g., "english-ewt",
"dutch-alpino"), to use the udpipe package (udpipe_annotate). If you don’t
know the model name, just type the language and you’ll get a suggestion. Oth-
erwise, use show_udpipe_models to get an overview of the available models.
For more information about udpipe and performance benchmarks of the UD
models, see the GitHub page of the udpipe package.

doc_id if x is a character/factor vector, doc_id can be used to specify document ids.
This has to be a vector of the same length as x

meta A data.frame with document meta information (e.g., date, source). The rows of
the data.frame need to match the values of x

max_sentences An integer. Limits the number of sentences per document to the specified num-
ber.

model_path If udpipe_model is used, this path wil be used to look for the model, and if
the model doesn’t yet exist it will be downloaded to this location. Defaults to
working directory

cache The number of persistent caches to keep for inputs of udpipe. The caches store
tokens in batches. This way, if a lot of data has to be parsed, or if R crashes,
udpipe can continue from the latest batch instead of start over. The caches are
stored in the corpustools_data folder (in udpipe_model_path). Only the most
recent [udpipe_caches] caches will be stored.

cores If udpipe_model is used, this sets the number of parallel cores. If not spec-
ified, will use the same number of cores as used by data.table (or limited to
OMP_THREAD_LIMIT)

batchsize In order to report progress and cache results, texts are parsed with udpipe in
batches of 50. The price is that there will be some overhead for each batch, so
for very large jobs it can be faster to increase the batchsize. If the number of
texts divided by the number of parallel cores is lower than the batchsize, the
texts are evenly distributed over cores.

use_parser If TRUE, use dependency parser (only if udpipe_model is used)

start_end If TRUE, include start and end positions of tokens

verbose If TRUE, report progress. Only if x is large enough to require multiple sequential
batches

text_columns if x is a data.frame, this specifies the column(s) that contains text. The texts are
paste together in the order specified here.

doc_column If x is a data.frame, this specifies the column with the document ids.

https://github.com/bnosac/udpipe

108 untokenize

Examples

...
if (interactive()) {
tc = udpipe_tcorpus(c('Text one first sentence. Text one second sentence', 'Text two'),

model = 'english-ewt')
tc$tokens
}
if (interactive()) {
tc = udpipe_tcorpus(sotu_texts[1:5,], doc_column='id', model = 'english-ewt')
tc$tokens
}
It makes little sense to have full texts as factors, but it tends to happen.
The create_tcorpus S3 method for factors is essentially identical to the
method for a character vector.

text = factor(c('Text one first sentence', 'Text one second sentence'))
if (interactive()) {
tc = udpipe_tcorpus(text, 'english-ewt-')
tc$tokens
}
library(quanteda)
udpipe_tcorpus(data_corpus_inaugural, 'english-ewt')

untokenize Reconstruct original texts

Description

If the tCorpus was created with remember_spaces = T, you can rebuild the original texts.

Usage

untokenize(tc)

Arguments

tc A tCorpus, created with create_tcorpus, with remember_spaces = TRUE

Value

A data.table with the text fields and meta fields as columns.

Examples

tc = create_tcorpus(sotu_texts, doc_column='id')
untokenize(tc)

Index

∗ datasets
corenlp_tokens, 19
sotu_texts, 63
stopwords_list, 64
tc_sotu_udpipe, 98

(back to overview), 92–97
$code_features()), 96
$context(), 93
$deduplicate(), 94
$delete_columns(), 93
$delete_meta_columns(), 93
$feature_subset(), 95
$get(), 93
$get_meta(), 93
$lda_fit(), 97
$preprocess(), 95
$search_recode(), 96
$set(), 93
$set_levels(), 93
$set_meta(), 93
$set_meta_levels(), 93
$set_meta_name(), 93
$set_name(), 93
$subset(), 94
$subset_query(), 94, 96

add_multitoken_label, 4
add_span_quotes, 105
agg_label, 6
agg_tcorpus, 7
aggregate_rsyntax, 5, 6, 7
annotate_rsyntax, 13, 31, 76
annotate_rsyntax

(tCorpus$annotate_rsyntax), 68
as.tcorpus, 8
as.tcorpus.default, 9
as.tcorpus.tCorpus, 9

backbone_filter, 10
browse_hits, 11, 37

browse_hits(), 96
browse_texts, 12

calc_chi2, 14
Co-occurrence networks, 68
code_dictionary

(tCorpus$code_dictionary), 69
code_features (tCorpus$code_features),

71
compare_corpus, 15, 43
compare_corpus(), 92
compare_documents, 16
compare_documents(), 94
compare_subset, 17, 43
compare_subset(), 92
context (tCorpus$context), 72
corenlp_tokens, 19
Corpus comparison, 68
count_tcorpus, 19
Create a tCorpus, 68
create_tcorpus, 20, 28, 75, 108
create_tcorpus(), 93

deduplicate (tCorpus$deduplicate), 72
delete_columns

(tCorpus$delete_columns), 74
delete_meta_columns

(tCorpus$delete_columns), 74
docfreq_filter, 24
Document similarity, 68
dtm_compare, 25
dtm_wordcloud, 26

ego_semnet, 27
ego_semnet(), 97
export_span_annotations, 28

feats_to_columms
(tCorpus$feats_to_columns), 75

feature_associations, 29, 41

109

110 INDEX

feature_associations(), 96
feature_stats, 31
feature_stats(), 95
feature_subset

(tCorpus$feature_subset), 75
Features, 68
fold_rsyntax, 31
freq_filter, 32

get (tCorpus$get), 77
get_dfm (get_dtm), 33
get_dfm(), 93
get_dtm, 33
get_dtm(), 93
get_global_i, 35
get_kwic, 36
get_meta (tCorpus$get), 77
get_stopwords, 37

kwic(), 96

laplace, 38
lda_fit (tCorpus$lda_fit), 79

Manage tCorpus data, 68
melt_quanteda_dict, 38, 54, 70, 83
merge (tCorpus$merge), 80
merge_meta (tCorpus$merge), 80
merge_tcorpora, 39, 93
modified by reference, 68

plot.contextHits, 40
plot.featureAssociations, 41
plot.featureHits, 42
plot.vocabularyComparison, 42
plot_semnet, 43
plot_semnet(), 97
plot_tree, 97, 98
plot_words, 45
preprocess, 22
preprocess (tCorpus$preprocess), 81
preprocess_tokens, 46
print.contextHits, 48
print.featureHits, 49
print.tCorpus, 49

refresh_tcorpus, 50
replace_dictionary

(tCorpus$replace_dictionary),
82

require_package, 50

search_contexts, 18, 20, 40, 48, 51, 65, 66,
89, 94

search_contexts(), 96
search_dictionary, 20, 53, 82
search_features, 11, 20, 29, 36, 37, 42, 49,

55, 67, 71, 84
search_features()), 96
search_recode (tCorpus$search_recode),

84
semnet, 59
semnet), 97
semnet_window, 60
semnet_window(), 97
set (tCorpus$set), 85
set_levels (tCorpus$set_levels), 86
set_meta (tCorpus$set), 85
set_meta_levels (tCorpus$set_levels), 86
set_meta_name (tCorpus$set_name), 87
set_name (tCorpus$set_name), 87
set_network_attributes, 61
sgt, 62
show_udpipe_models, 22, 63, 107
sotu_texts, 63
stopwords_list, 64
subset, 65, 89, 94
subset (tCorpus$subset), 87
subset(), 94
subset.data.table, 88
subset.tCorpus, 64
subset_meta (tCorpus$subset), 87
subset_query, 37, 65
subset_query(), 94
summary.contextHits, 66
summary.featureHits, 66
summary.tCorpus, 67

tc_plot_tree, 97
tc_sotu_udpipe, 98
tCorpus, 15, 16, 18, 20, 29, 34, 51, 55, 65, 67
tcorpus (tCorpus), 67
tCorpus$annotate_rsyntax, 68
tCorpus$code_dictionary, 69
tCorpus$code_features, 71
tCorpus$context, 72
tCorpus$deduplicate, 72
tCorpus$delete_columns, 74

INDEX 111

tCorpus$delete_meta_columns
(tCorpus$delete_columns), 74

tCorpus$feats_to_columns, 75
tCorpus$feature_subset, 75, 88
tCorpus$fold_rsyntax, 76
tCorpus$get, 77
tCorpus$get_meta (tCorpus$get), 77
tCorpus$lda_fit, 79
tCorpus$merge, 80
tCorpus$preprocess, 81
tCorpus$replace_dictionary, 82
tCorpus$search_recode, 84
tCorpus$set, 85
tCorpus$set_levels, 86
tCorpus$set_meta (tCorpus$set), 85
tCorpus$set_meta_levels

(tCorpus$set_levels), 86
tCorpus$set_meta_name

(tCorpus$set_name), 87
tCorpus$set_name, 87
tCorpus$subset, 76, 78, 87, 93
tCorpus$subset_meta (tCorpus$subset), 87
tCorpus$subset_query, 89
tCorpus$udpipe_clauses, 90
tCorpus$udpipe_quotes, 91
tCorpus_compare, 92
tCorpus_create, 92
tCorpus_data, 93
tCorpus_docsim, 94
tCorpus_features, 94
tCorpus_modify_by_reference, 72, 95
tCorpus_querying, 96
tCorpus_semnet, 96
tCorpus_topmod, 97
tokens_to_tcorpus, 99
tokens_to_tcorpus(), 93
tokenWindowOccurence, 100
top_features, 101
top_features(), 95
Topic modeling, 68
tquery, 69
transform_rsyntax, 102

udpipe_annotate, 22, 107
udpipe_clause_tqueries, 90, 103
udpipe_clauses

(tCorpus$udpipe_clauses), 90
udpipe_download_model, 63
udpipe_quote_tqueries, 91, 103, 104

udpipe_quotes, 105
udpipe_quotes (tCorpus$udpipe_quotes),

91
udpipe_simplify, 104
udpipe_spanquote_tqueries, 91, 105
udpipe_tcorpus, 90, 91, 103, 104, 106
untokenize, 108
Using search strings, 68

	add_multitoken_label
	aggregate_rsyntax
	agg_label
	agg_tcorpus
	as.tcorpus
	as.tcorpus.default
	as.tcorpus.tCorpus
	backbone_filter
	browse_hits
	browse_texts
	calc_chi2
	compare_corpus
	compare_documents
	compare_subset
	corenlp_tokens
	count_tcorpus
	create_tcorpus
	docfreq_filter
	dtm_compare
	dtm_wordcloud
	ego_semnet
	export_span_annotations
	feature_associations
	feature_stats
	fold_rsyntax
	freq_filter
	get_dtm
	get_global_i
	get_kwic
	get_stopwords
	laplace
	melt_quanteda_dict
	merge_tcorpora
	plot.contextHits
	plot.featureAssociations
	plot.featureHits
	plot.vocabularyComparison
	plot_semnet
	plot_words
	preprocess_tokens
	print.contextHits
	print.featureHits
	print.tCorpus
	refresh_tcorpus
	require_package
	search_contexts
	search_dictionary
	search_features
	semnet
	semnet_window
	set_network_attributes
	sgt
	show_udpipe_models
	sotu_texts
	stopwords_list
	subset.tCorpus
	subset_query
	summary.contextHits
	summary.featureHits
	summary.tCorpus
	tCorpus
	tCorpus$annotate_rsyntax
	tCorpus$code_dictionary
	tCorpus$code_features
	tCorpus$context
	tCorpus$deduplicate
	tCorpus$delete_columns
	tCorpus$feats_to_columns
	tCorpus$feature_subset
	tCorpus$fold_rsyntax
	tCorpus$get
	tCorpus$lda_fit
	tCorpus$merge
	tCorpus$preprocess
	tCorpus$replace_dictionary
	tCorpus$search_recode
	tCorpus$set
	tCorpus$set_levels
	tCorpus$set_name
	tCorpus$subset
	tCorpus$subset_query
	tCorpus$udpipe_clauses
	tCorpus$udpipe_quotes
	tCorpus_compare
	tCorpus_create
	tCorpus_data
	tCorpus_docsim
	tCorpus_features
	tCorpus_modify_by_reference
	tCorpus_querying
	tCorpus_semnet
	tCorpus_topmod
	tc_plot_tree
	tc_sotu_udpipe
	tokens_to_tcorpus
	tokenWindowOccurence
	top_features
	transform_rsyntax
	udpipe_clause_tqueries
	udpipe_quote_tqueries
	udpipe_simplify
	udpipe_spanquote_tqueries
	udpipe_tcorpus
	untokenize
	Index

